Modified Costas loop; descramble sync data before unmapping

This commit is contained in:
RecklessAndFeckless 2024-10-14 23:52:56 -04:00
parent cfbbacdd0f
commit 5d097d7df8
6 changed files with 298 additions and 61 deletions

View File

@ -40,7 +40,7 @@ public:
* @param data The input data stream to be transmitted. The `is_voice` parameter controls whether the modem treats it as binary file data, * @param data The input data stream to be transmitted. The `is_voice` parameter controls whether the modem treats it as binary file data,
* or a binary stream from the MELPe (or other) voice codec. * or a binary stream from the MELPe (or other) voice codec.
*/ */
ModemController(const size_t _baud_rate, const bool _is_voice, const bool _is_frequency_hopping, const size_t _interleave_setting, BitStream _data) ModemController(const size_t _baud_rate, const bool _is_voice, const bool _is_frequency_hopping, const size_t _interleave_setting)
: baud_rate(_baud_rate), : baud_rate(_baud_rate),
is_voice(_is_voice), is_voice(_is_voice),
is_frequency_hopping(_is_frequency_hopping), is_frequency_hopping(_is_frequency_hopping),
@ -49,7 +49,6 @@ public:
scrambler(), scrambler(),
fec_encoder(_baud_rate, _is_frequency_hopping), fec_encoder(_baud_rate, _is_frequency_hopping),
interleaver(_baud_rate, _interleave_setting, _is_frequency_hopping), interleaver(_baud_rate, _interleave_setting, _is_frequency_hopping),
input_data(std::move(_data)),
mgd_decoder(_baud_rate, _is_frequency_hopping), mgd_decoder(_baud_rate, _is_frequency_hopping),
modulator(48000, _is_frequency_hopping, 48) {} modulator(48000, _is_frequency_hopping, 48) {}
@ -58,7 +57,7 @@ public:
* @return The scrambled data ready for modulation. * @return The scrambled data ready for modulation.
* @note The modulated signal is generated internally but is intended to be handled externally. * @note The modulated signal is generated internally but is intended to be handled externally.
*/ */
std::vector<int16_t> transmit() { std::vector<int16_t> transmit(BitStream input_data) {
// Step 1: Append EOM Symbols // Step 1: Append EOM Symbols
BitStream eom_appended_data = appendEOMSymbols(input_data); BitStream eom_appended_data = appendEOMSymbols(input_data);
@ -84,11 +83,17 @@ public:
return modulated_signal; return modulated_signal;
} }
BitStream receive(const std::vector<int16_t>& passband_signal) {
// Step one: Demodulate the passband signal and retrieve decoded symbols
std::vector<uint8_t> demodulated_symbols = modulator.demodulate(passband_signal, baud_rate, interleave_setting, is_voice);
return BitStream();
}
private: private:
size_t baud_rate; ///< The baud rate for the modem. size_t baud_rate; ///< The baud rate for the modem.
bool is_voice; ///< Indicates if the data being transmitted is voice. bool is_voice; ///< Indicates if the data being transmitted is voice.
bool is_frequency_hopping; ///< Indicates if frequency hopping is used. bool is_frequency_hopping; ///< Indicates if frequency hopping is used.
BitStream input_data; ///< The input data stream.
size_t interleave_setting; ///< The interleave setting to be used. size_t interleave_setting; ///< The interleave setting to be used.
size_t sample_rate; size_t sample_rate;

View File

@ -15,14 +15,14 @@ public:
/** /**
* @brief Constructor initializes the scrambler with a predefined register value. * @brief Constructor initializes the scrambler with a predefined register value.
*/ */
Scrambler() : data_sequence_register(0x0BAD), symbol_count(0) {} Scrambler() : data_sequence_register(0x0BAD), symbol_count(0), preamble_table_index(0) {}
/** /**
* @brief Scrambles a synchronization preamble using a fixed randomizer sequence. * @brief Scrambles a synchronization preamble using a fixed randomizer sequence.
* @param preamble The synchronization preamble to scramble. * @param preamble The synchronization preamble to scramble.
* @return The scrambled synchronization preamble. * @return The scrambled synchronization preamble.
*/ */
std::vector<uint8_t> scrambleSyncPreamble(const std::vector<uint8_t>& preamble) const { std::vector<uint8_t> scrambleSyncPreamble(const std::vector<uint8_t>& preamble) {
static const std::array<uint8_t, 32> sync_randomizer_sequence = { static const std::array<uint8_t, 32> sync_randomizer_sequence = {
7, 4, 3, 0, 5, 1, 5, 0, 2, 2, 1, 1, 7, 4, 3, 0, 5, 1, 5, 0, 2, 2, 1, 1,
5, 7, 4, 3, 5, 0, 2, 6, 2, 1, 6, 2, 5, 7, 4, 3, 5, 0, 2, 6, 2, 1, 6, 2,
@ -33,8 +33,9 @@ public:
scrambled_preamble.reserve(preamble.size()); // Preallocate to improve efficiency scrambled_preamble.reserve(preamble.size()); // Preallocate to improve efficiency
for (size_t i = 0; i < preamble.size(); ++i) { for (size_t i = 0; i < preamble.size(); ++i) {
uint8_t scrambled_value = (preamble[i] + sync_randomizer_sequence[i % sync_randomizer_sequence.size()]) % 8; uint8_t scrambled_value = (preamble[i] + sync_randomizer_sequence[preamble_table_index]) % 8;
scrambled_preamble.push_back(scrambled_value); scrambled_preamble.push_back(scrambled_value);
preamble_table_index = (preamble_table_index + 1) % sync_randomizer_sequence.size();
} }
return scrambled_preamble; return scrambled_preamble;
@ -61,6 +62,7 @@ public:
private: private:
uint16_t data_sequence_register; uint16_t data_sequence_register;
size_t symbol_count; size_t symbol_count;
size_t preamble_table_index;
/** /**
* @brief Generates the next value from the data sequence randomizing generator. * @brief Generates the next value from the data sequence randomizing generator.

View File

@ -3,6 +3,7 @@
#include <algorithm> #include <algorithm>
#include <array>
#include <cmath> #include <cmath>
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
@ -10,9 +11,12 @@
#include <stdexcept> #include <stdexcept>
#include <vector> #include <vector>
#include <fftw3.h> #include <fftw3.h>
#include <map>
#include <tuple>
#include "costasloop.h" #include "costasloop.h"
#include "filters.h" #include "filters.h"
#include "Scrambler.h"
static constexpr double CARRIER_FREQ = 1800.0; static constexpr double CARRIER_FREQ = 1800.0;
static constexpr size_t SYMBOL_RATE = 2400; static constexpr size_t SYMBOL_RATE = 2400;
@ -77,9 +81,9 @@ public:
return final_signal; return final_signal;
} }
std::vector<uint8_t> demodulate(const std::vector<int16_t> passband_signal) { std::vector<uint8_t> demodulate(const std::vector<int16_t> passband_signal, size_t& baud_rate, size_t& interleave_setting, bool& is_voice) {
// Carrier recovery. initialize the Costas loop. // Carrier recovery. initialize the Costas loop.
CostasLoop costas_loop(CARRIER_FREQ, sample_rate, symbolMap, 5.0); CostasLoop costas_loop(CARRIER_FREQ, sample_rate, symbolMap, 5.0, 0.05, 0.01);
// Convert passband signal to doubles. // Convert passband signal to doubles.
std::vector<double> normalized_passband(passband_signal.size()); std::vector<double> normalized_passband(passband_signal.size());
@ -89,23 +93,30 @@ public:
// Downmix passband to baseband // Downmix passband to baseband
std::vector<std::complex<double>> baseband_IQ = costas_loop.process(normalized_passband); std::vector<std::complex<double>> baseband_IQ = costas_loop.process(normalized_passband);
std::vector<uint8_t> detected_symbols;
// Phase detection and symbol formation // Phase detection and symbol formation
std::vector<uint8_t> baseband_symbols;
size_t samples_per_symbol = sample_rate / SYMBOL_RATE; size_t samples_per_symbol = sample_rate / SYMBOL_RATE;
bool sync_found = false;
size_t sync_segments_detected;
size_t window_size = 32*15;
for (size_t i = 0; i < baseband_IQ.size(); i += samples_per_symbol) { for (size_t i = 0; i < baseband_IQ.size(); i += samples_per_symbol) {
std::complex<double> symbol_avg(0.0, 0.0); std::complex<double> symbol_avg(0.0, 0.0);
for (size_t j = 0; j < samples_per_symbol; ++j) { for (size_t j = 0; j < samples_per_symbol; j++) {
symbol_avg += baseband_IQ[i + j]; symbol_avg += baseband_IQ[i + j];
} }
symbol_avg /= static_cast<double>(samples_per_symbol); symbol_avg /= static_cast<double>(samples_per_symbol);
// Detect symbol from averaged signal uint8_t detected_symbol = phase_detector.getSymbol(symbol_avg);
baseband_symbols.emplace_back(phase_detector.getSymbol(symbol_avg)); detected_symbols.push_back(detected_symbol);
}
if (processSyncSegments(detected_symbols, baud_rate, interleave_setting, is_voice)) {
return processDataSymbols(detected_symbols);
} }
return baseband_symbols;
} }
private: private:
@ -137,6 +148,220 @@ private:
{gain * std::cos(2.0*M_PI*(7.0/8.0)), gain * std::sin(2.0*M_PI*(7.0/8.0))} // 7 (111) corresponds to I = cos(315), Q = sin(315) {gain * std::cos(2.0*M_PI*(7.0/8.0)), gain * std::sin(2.0*M_PI*(7.0/8.0))} // 7 (111) corresponds to I = cos(315), Q = sin(315)
}; };
} }
uint8_t extractBestTribit(const std::vector<uint8_t>& stream, const size_t start, const size_t window_size) const {
if (start + window_size > stream.size()) {
throw std::out_of_range("Window size exceeds symbol stream size.");
}
Scrambler scrambler;
std::vector<uint8_t> symbol(stream.begin() + start, stream.begin() + start + window_size);
std::vector<uint8_t> descrambled_symbol = scrambler.scrambleSyncPreamble(symbol);
const size_t split_len = window_size / 4;
std::array<uint8_t, 8> tribit_counts = {0}; // Counts for each channel symbol (000 to 111)
// Loop through each split segment (4 segments)
for (size_t i = 0; i < 4; ++i) {
// Extract the range for this split
size_t segment_start = start + i * split_len;
size_t segment_end = segment_start + split_len;
// Compare this segment to the predefined patterns from the table and map to a channel symbol
uint8_t tribit_value = mapSegmentToChannelSymbol(descrambled_symbol, segment_start, segment_end);
// Increment the corresponding channel symbol count
tribit_counts[tribit_value]++;
}
// Find the channel symbol with the highest count (majority vote)
uint8_t best_symbol = std::distance(tribit_counts.begin(), std::max_element(tribit_counts.begin(), tribit_counts.end()));
return best_symbol;
}
// Function to map a segment of the stream back to a channel symbol based on the repeating patterns
uint8_t mapSegmentToChannelSymbol(const std::vector<uint8_t>& segment, size_t start, size_t end) const {
std::vector<uint8_t> extracted_pattern(segment.begin() + start, segment.begin() + end);
// Compare the extracted pattern with known patterns from the table
if (matchesPattern(extracted_pattern, {0, 0, 0, 0, 0, 0, 0, 0})) return 0b000;
if (matchesPattern(extracted_pattern, {0, 4, 0, 4, 0, 4, 0, 4})) return 0b001;
if (matchesPattern(extracted_pattern, {0, 0, 4, 4, 0, 0, 4, 4})) return 0b010;
if (matchesPattern(extracted_pattern, {0, 4, 4, 0, 0, 4, 4, 0})) return 0b011;
if (matchesPattern(extracted_pattern, {0, 0, 0, 0, 4, 4, 4, 4})) return 0b100;
if (matchesPattern(extracted_pattern, {0, 4, 0, 4, 4, 0, 4, 0})) return 0b101;
if (matchesPattern(extracted_pattern, {0, 0, 4, 4, 4, 4, 0, 0})) return 0b110;
if (matchesPattern(extracted_pattern, {0, 4, 4, 0, 4, 0, 0, 4})) return 0b111;
throw std::invalid_argument("Invalid segment pattern");
}
// Helper function to compare two patterns
bool matchesPattern(const std::vector<uint8_t>& segment, const std::vector<uint8_t>& pattern) const {
return std::equal(segment.begin(), segment.end(), pattern.begin());
}
bool configureModem(uint8_t D1, uint8_t D2, size_t& baud_rate, size_t& interleave_setting, bool& is_voice) {
// Predefine all the valid combinations in a lookup map
static const std::map<std::pair<uint8_t, uint8_t>, std::tuple<size_t, size_t, bool>> modemConfig = {
{{7, 6}, {4800, 1, false}}, // 4800 bps
{{7, 7}, {2400, 1, true}}, // 2400 bps, voice
{{6, 4}, {2400, 1, false}}, // 2400 bps, data
{{6, 5}, {1200, 1, false}}, // 1200 bps
{{6, 6}, {600, 1, false}}, // 600 bps
{{6, 7}, {300, 1, false}}, // 300 bps
{{7, 4}, {150, 1, false}}, // 150 bps
{{7, 5}, {75, 1, false}}, // 75 bps
{{4, 4}, {2400, 2, false}}, // 2400 bps, long interleave
{{4, 5}, {1200, 2, false}}, // 1200 bps, long interleave
{{4, 6}, {600, 2, false}}, // 600 bps, long interleave
{{4, 7}, {300, 2, false}}, // 300 bps, long interleave
{{5, 4}, {150, 2, false}}, // 150 bps, long interleave
{{5, 5}, {75, 2, false}}, // 75 bps, long interleave
};
// Use D1 and D2 to look up the correct configuration
auto it = modemConfig.find({D1, D2});
if (it != modemConfig.end()) {
// Set the parameters if found
std::tie(baud_rate, interleave_setting, is_voice) = it->second;
return true;
} else {
return false;
}
}
uint8_t calculateSegmentCount(const uint8_t C1, const uint8_t C2, const uint8_t C3) {
uint8_t extracted_C1 = C1 & 0b11;
uint8_t extracted_C2 = C2 & 0b11;
uint8_t extracted_C3 = C3 & 0b11;
uint8_t segment_count = (extracted_C1 << 4) | (extracted_C2 << 2) | extracted_C3;
return segment_count;
}
bool processSegment(const std::vector<uint8_t>& detected_symbols, size_t& start, size_t symbol_size, size_t& segment_count, uint8_t& D1, uint8_t& D2) {
size_t sync_pattern_length = 9;
if (start + symbol_size * sync_pattern_length > detected_symbols.size()) {
start = detected_symbols.size();
return false;
}
std::vector<uint8_t> window(detected_symbols.begin() + start, detected_symbols.begin() + start + sync_pattern_length * symbol_size);
std::vector<uint8_t> extracted_window;
for (size_t i = 0; i < sync_pattern_length; i++) {
extracted_window.push_back(extractBestTribit(window, i * symbol_size, symbol_size));
}
if (!matchesPattern(extracted_window, {0, 1, 3, 0, 1, 3, 1, 2, 0})) {
start += symbol_size;
return false;
}
start += sync_pattern_length * symbol_size;
size_t D1_index = start + symbol_size;
size_t D2_index = D1_index + symbol_size;
if (D2_index + symbol_size > detected_symbols.size()) {
start = detected_symbols.size();
return false;
}
D1 = extractBestTribit(detected_symbols, D1_index, symbol_size);
D2 = extractBestTribit(detected_symbols, D2_index, symbol_size);
// Process the count symbols (C1, C2, C3)
size_t C1_index = D2_index + symbol_size;
size_t C2_index = C1_index + symbol_size;
size_t C3_index = C2_index + symbol_size;
if (C3_index + symbol_size > detected_symbols.size()) {
start = detected_symbols.size();
return false;
}
uint8_t C1 = extractBestTribit(detected_symbols, C1_index, symbol_size);
uint8_t C2 = extractBestTribit(detected_symbols, C2_index, symbol_size);
uint8_t C3 = extractBestTribit(detected_symbols, C3_index, symbol_size);
segment_count = calculateSegmentCount(C1, C2, C3);
// Check for the constant zero pattern
size_t constant_zero_index = C3_index + symbol_size;
if (constant_zero_index + symbol_size > detected_symbols.size()) {
start = detected_symbols.size();
return false;
}
uint8_t constant_zero = extractBestTribit(detected_symbols, constant_zero_index, symbol_size);
if (constant_zero != 0) {
start = constant_zero_index + symbol_size;
return false; // Failed zero check, resync
}
// Successfully processed the segment
start = constant_zero_index + symbol_size; // Move start to next segment
return true;
}
bool processSyncSegments(const std::vector<uint8_t>& detected_symbols, size_t& baud_rate, size_t& interleave_setting, bool& is_voice) {
size_t symbol_size = 32;
size_t start = 0;
size_t segment_count = 0;
std::map<std::pair<uint8_t, uint8_t>, int> vote_map;
const int short_interleave_threshold = 2;
const int long_interleave_threshold = 5;
// Attempt to detect interleave setting dynamically
bool interleave_detected = false;
int current_threshold = short_interleave_threshold; // Start by assuming short interleave
while (start + symbol_size * 15 < detected_symbols.size()) {
uint8_t D1 = 0, D2 = 0;
if (processSegment(detected_symbols, start, symbol_size, segment_count, D1, D2)) {
vote_map[{D1, D2}]++;
// Check if we have enough votes to make a decision based on current interleave assumption
if (vote_map.size() >= current_threshold) {
auto majority_vote = std::max_element(vote_map.begin(), vote_map.end(), [](const auto& a, const auto& b) { return a.second < b.second; });
if (configureModem(majority_vote->first.first, majority_vote->first.second, baud_rate, interleave_setting, is_voice)) {
interleave_detected = true;
break; // Successfully configured modem, exit loop
} else {
// If configuration fails, retry with the other interleave type
if (current_threshold == short_interleave_threshold) {
current_threshold = long_interleave_threshold; // Switch to long interleave
vote_map.clear(); // Clear the vote map and start fresh
start = 0; // Restart segment processing
} else {
continue; // Both short and long interleave attempts failed, signal is not usable
}
}
}
if (segment_count > 0) {
while (segment_count > 0 && start < detected_symbols.size()) {
uint8_t dummy_D1, dummy_D2;
if (!processSegment(detected_symbols, start, symbol_size, segment_count, dummy_D1, dummy_D2)) {
continue;
}
}
}
} else {
start += symbol_size; // Move to the next segment
}
}
return interleave_detected;
}
std::vector<uint8_t> processDataSymbols(const std::vector<uint8_t>& detected_symbols) {
return std::vector<uint8_t>();
}
}; };
#endif #endif

View File

@ -19,7 +19,7 @@ public:
/** /**
* @brief Default constructor. * @brief Default constructor.
*/ */
BitStream() : bit_index(0), max_bit_idx(0) {} BitStream() : std::vector<uint8_t>(), bit_index(0), max_bit_idx(0) {}
/** /**
* @brief Constructs a BitStream from an existing vector of bytes. * @brief Constructs a BitStream from an existing vector of bytes.

View File

@ -39,8 +39,8 @@ private:
class CostasLoop { class CostasLoop {
public: public:
CostasLoop(const double _carrier_freq, const double _sample_rate, const std::vector<std::complex<double>>& _symbolMap, const double _vco_gain) CostasLoop(const double _carrier_freq, const double _sample_rate, const std::vector<std::complex<double>>& _symbolMap, const double _vco_gain, const double _alpha, const double _beta)
: carrier_freq(_carrier_freq), sample_rate(_sample_rate), vco_gain(_vco_gain), k_factor(-1 / (_sample_rate * _vco_gain)), : carrier_freq(_carrier_freq), sample_rate(_sample_rate), vco_gain(_vco_gain), alpha(_alpha), beta(_beta), freq_error(0.0), k_factor(-1 / (_sample_rate * _vco_gain)),
prev_in_iir(0), prev_out_iir(0), prev_in_vco(0), feedback(1.0, 0.0), prev_in_iir(0), prev_out_iir(0), prev_in_vco(0), feedback(1.0, 0.0),
error_total(0), out_iir_total(0), in_vco_total(0), error_total(0), out_iir_total(0), in_vco_total(0),
srrc_filter(SRRCFilter(48, _sample_rate, 2400, 0.35)) {} srrc_filter(SRRCFilter(48, _sample_rate, 2400, 0.35)) {}
@ -67,26 +67,22 @@ public:
std::complex<double> limited = limiter(filtered); std::complex<double> limited = limiter(filtered);
// IIR Filter // IIR Filter
double in_iir = std::asin(std::clamp(multiplied.imag() * limited.real() - multiplied.real() * limited.imag(), -1.0, 1.0)); double error_real = (limited.real() > 0 ? 1.0 : -1.0) * limited.imag();
error_total += in_iir; double error_imag = (limited.imag() > 0 ? 1.0 : -1.0) * limited.real();
double phase_error = error_real - error_imag;
phase_error = 0.5 * (std::abs(phase_error + 1) - std::abs(phase_error - 1));
double out_iir = 1.0001 * in_iir - prev_in_iir + prev_out_iir; freq_error += beta * phase_error;
prev_in_iir = in_iir; double phase_adjust = alpha * phase_error + freq_error;
prev_out_iir = out_iir;
out_iir_total += out_iir;
// VCO Block current_phase += 2 * M_PI * carrier_freq / sample_rate + k_factor * phase_adjust;
double in_vco = out_iir + prev_in_vco; if (current_phase > M_PI) current_phase -= 2 * M_PI;
in_vco_total += in_vco; else if (current_phase < -M_PI) current_phase += 2 * M_PI;
prev_in_vco = in_vco;
// Generate feedback signal for next iteration // Generate feedback signal for next iteration
double feedback_real = std::cos(current_phase); double feedback_real = std::cos(current_phase);
double feedback_imag = -std::sin(current_phase); double feedback_imag = -std::sin(current_phase);
feedback = std::complex<double>(feedback_real, feedback_imag); feedback = std::complex<double>(feedback_real, feedback_imag);
current_phase += 2 * M_PI * carrier_freq / sample_rate + k_factor * in_vco;
if (current_phase > 2 * M_PI) current_phase -= 2 * M_PI;
} }
return output_signal; return output_signal;
@ -105,6 +101,9 @@ private:
double in_vco_total; double in_vco_total;
SRRCFilter srrc_filter; SRRCFilter srrc_filter;
double vco_gain; double vco_gain;
double alpha;
double beta;
double freq_error;
std::complex<double> limiter(const std::complex<double>& sample) const { std::complex<double> limiter(const std::complex<double>& sample) const {
double limited_I = std::clamp(sample.real(), -1.0, 1.0); double limited_I = std::clamp(sample.real(), -1.0, 1.0);

View File

@ -1,6 +1,7 @@
#include <bitset> #include <bitset>
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
#include <random>
#include <string> #include <string>
#include <sndfile.h> #include <sndfile.h>
#include <vector> #include <vector>
@ -8,49 +9,54 @@
#include "ModemController.h" #include "ModemController.h"
#include "PSKModulator.h" #include "PSKModulator.h"
int main() { BitStream generateBernoulliData(size_t length, double p = 0.5) {
// Sample test data BitStream random_data;
std::string sample_string = "The quick brown fox jumps over the lazy dog 1234567890"; std::random_device rd;
std::vector<uint8_t> sample_data(sample_string.begin(), sample_string.end()); std::mt19937 gen(rd());
std::bernoulli_distribution dist(p);
for (size_t i = 0; i < length * 8; ++i) {
random_data.putBit(dist(gen)); // Generates 0 or 1 with probability p
}
return random_data;
}
int main() {
// Convert sample data to a BitStream object // Convert sample data to a BitStream object
BitStream input_data(sample_data, sample_data.size() * 8); BitStream input_data = generateBernoulliData(28800);
// Configuration for modem // Configuration for modem
size_t baud_rate = 150; size_t baud_rate = 75;
bool is_voice = false; // False indicates data mode bool is_voice = false; // False indicates data mode
bool is_frequency_hopping = false; // Fixed frequency operation bool is_frequency_hopping = false; // Fixed frequency operation
size_t interleave_setting = 1; // Short interleave size_t interleave_setting = 2; // Short interleave
// Create ModemController instance // Create ModemController instance
ModemController modem(baud_rate, is_voice, is_frequency_hopping, interleave_setting, input_data); ModemController modem(baud_rate, is_voice, is_frequency_hopping, interleave_setting);
PSKModulator modulator(48000, is_frequency_hopping, 48);
const char* file_name = "modulated_signal_75bps_shortinterleave.wav"; const char* file_name = "modulated_signal_75bps_longinterleave.wav";
// Perform transmit operation to generate modulated signal // Perform transmit operation to generate modulated signal
std::vector<int16_t> modulated_signal = modem.transmit(); std::vector<int16_t> modulated_signal = modem.transmit(input_data);
std::vector<uint8_t> demodulated_symbols = modulator.demodulate(modulated_signal); // Output modulated signal to a WAV file using libsndfile
SF_INFO sfinfo;
sfinfo.channels = 1;
sfinfo.samplerate = 48000;
sfinfo.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16;
//// Output modulated signal to a WAV file using libsndfile SNDFILE* sndfile = sf_open(file_name, SFM_WRITE, &sfinfo);
//SF_INFO sfinfo; if (sndfile == nullptr) {
//sfinfo.channels = 1; std::cerr << "Unable to open WAV file for writing modulated signal: " << sf_strerror(sndfile) << "\n";
//sfinfo.samplerate = 48000; return 1;
//sfinfo.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16; }
//
//SNDFILE* sndfile = sf_open(file_name, SFM_WRITE, &sfinfo); sf_write_short(sndfile, modulated_signal.data(), modulated_signal.size());
//if (sndfile == nullptr) { sf_close(sndfile);
// std::cerr << "Unable to open WAV file for writing modulated signal: " << sf_strerror(sndfile) << "\n"; std::cout << "Modulated signal written to " << file_name << '\n';
// return 1;
//} // Success message
// std::cout << "Modem test completed successfully.\n";
//sf_write_short(sndfile, modulated_signal.data(), modulated_signal.size());
//sf_close(sndfile);
//std::cout << "Modulated signal written to " << file_name << '\n';
//
//// Success message
//std::cout << "Modem test completed successfully.\n";
return 0; return 0;
} }