I am become lost, confuser of words

This commit is contained in:
RecklessAndFeckless 2024-10-10 23:37:15 -04:00
parent 628a25dc24
commit b9502ebe86
2 changed files with 166 additions and 156 deletions

View File

@ -15,7 +15,7 @@ public:
/** /**
* @brief Constructor initializes the scrambler with a predefined register value. * @brief Constructor initializes the scrambler with a predefined register value.
*/ */
Scrambler() : data_sequence_register(0x0BAD) {} Scrambler() : data_sequence_register(0x0BAD), symbol_count(0) {}
/** /**
* @brief Scrambles a synchronization preamble using a fixed randomizer sequence. * @brief Scrambles a synchronization preamble using a fixed randomizer sequence.
@ -60,37 +60,44 @@ public:
private: private:
uint16_t data_sequence_register; uint16_t data_sequence_register;
size_t symbol_count;
/** /**
* @brief Generates the next value from the data sequence randomizing generator. * @brief Generates the next value from the data sequence randomizing generator.
* @return A 3-bit random value (0-7) from the current state of the LFSR. * @return A 3-bit random value (0-7) from the current state of the LFSR.
*/ */
uint8_t getNextRandomValue() { uint8_t getNextRandomValue() {
uint8_t output = data_sequence_register & 0x07; // Reset the LFSR state every 160 symbols, as per the specification
if (symbol_count >= 160) {
data_sequence_register = 0x0BAD; // Load initial value "BAD" (hex)
symbol_count = 0;
}
symbol_count++;
uint8_t output = data_sequence_register & 0x07; // Extract the lower 3 bits
// Perform 8 shifts to generate the next 3-bit random value
for (int i = 0; i < 8; ++i) { for (int i = 0; i < 8; ++i) {
// Get the most significant bit // Extract the MSB (bit 11 in a 12-bit register)
uint16_t msb = (data_sequence_register >> 11) & 0x01; uint16_t msb = (data_sequence_register & 0x0800) ? 1 : 0; // Bit 11 is 0x0800
// XOR taps and shift into the LFSR // Shift the register left by 1 bit
uint16_t bit1 = (data_sequence_register & 0x01) ^ msb; data_sequence_register <<= 1;
uint16_t bit4 = ((data_sequence_register >> 3) & 0x01) ^ msb;
uint16_t bit6 = ((data_sequence_register >> 5) & 0x01) ^ msb;
// Update specific bits in the shift register // Apply feedback if MSB was set
data_sequence_register = (data_sequence_register & ~(1 << 5)) | (bit6 << 5); if (msb) {
data_sequence_register = (data_sequence_register & ~(1 << 3)) | (bit4 << 3); // XOR with the tapped bits (positions 1, 4, and 6)
data_sequence_register = (data_sequence_register & ~0x01) | bit1; // Tap mask is 0x052 (bits 1, 4, 6): taps at positions 1, 4, 6 affect the feedback
data_sequence_register ^= 0x052;
}
// Shift left and insert the MSB // Ensure the LFSR stays within 12 bits
data_sequence_register = (data_sequence_register << 1) | msb;
// Keep the LFSR in 12 bits
data_sequence_register &= 0x0FFF; data_sequence_register &= 0x0FFF;
} }
return output; return output;
} }
}; };
#endif #endif

View File

@ -10,24 +10,6 @@
#include "Scrambler.h" #include "Scrambler.h"
enum class SymbolType { SYNC_PREAMBLE, UNKNOWN_DATA, PROBE_DATA };
static constexpr size_t LONG_PROBE_DATA_BLOCK_SIZE = 20;
static constexpr size_t SHORT_PROBE_DATA_BLOCK_SIZE = 16;
static constexpr size_t LONG_UNKNOWN_DATA_BLOCK_SIZE = 32;
static constexpr size_t SHORT_UNKNOWN_DATA_BLOCK_SIZE = 20;
static constexpr size_t SET_SIZE_LONG = 360;
static constexpr size_t SET_SIZE_SHORT = 32;
std::vector<uint8_t> Sync_Preamble_0 = {0, 0, 0, 0, 0, 0, 0, 0};
std::vector<uint8_t> Sync_Preamble_1 = {0, 4, 0, 4, 0, 4, 0, 4};
std::vector<uint8_t> Sync_Preamble_2 = {0, 0, 4, 4, 0, 0, 4, 4};
std::vector<uint8_t> Sync_Preamble_3 = {0, 4, 4, 0, 0, 4, 4, 0};
std::vector<uint8_t> Sync_Preamble_4 = {0, 0, 0, 0, 4, 4, 4, 4};
std::vector<uint8_t> Sync_Preamble_5 = {0, 4, 0, 4, 4, 0, 4, 0};
std::vector<uint8_t> Sync_Preamble_6 = {0, 0, 4, 4, 4, 4, 0, 0};
std::vector<uint8_t> Sync_Preamble_7 = {0, 4, 4, 0, 4, 0, 0, 4};
std::vector<uint8_t> baud75_exceptional_0 = {0, 0, 0, 0, 4, 4, 4, 4}; std::vector<uint8_t> baud75_exceptional_0 = {0, 0, 0, 0, 4, 4, 4, 4};
std::vector<uint8_t> baud75_exceptional_1 = {0, 4, 0, 4, 4, 0, 4, 0}; std::vector<uint8_t> baud75_exceptional_1 = {0, 4, 0, 4, 4, 0, 4, 0};
std::vector<uint8_t> baud75_exceptional_2 = {0, 0, 4, 4, 4, 4, 0, 0}; std::vector<uint8_t> baud75_exceptional_2 = {0, 0, 4, 4, 4, 4, 0, 0};
@ -46,8 +28,10 @@ class SymbolFormation {
std::vector<uint8_t> sync_preamble = generateSyncPreamble(); std::vector<uint8_t> sync_preamble = generateSyncPreamble();
sync_preamble = scrambler.scrambleSyncPreamble(sync_preamble); sync_preamble = scrambler.scrambleSyncPreamble(sync_preamble);
size_t unknown_data_block_size = (baud_rate >= 2400) ? LONG_UNKNOWN_DATA_BLOCK_SIZE : SHORT_UNKNOWN_DATA_BLOCK_SIZE; // Determine the block sizes
size_t unknown_data_block_size = (baud_rate >= 2400) ? 32 : 20;
size_t interleaver_block_size; size_t interleaver_block_size;
if (baud_rate == 2400) { if (baud_rate == 2400) {
interleaver_block_size = (interleave_setting == 2) ? (40 * 576) : (40 * 72); interleaver_block_size = (interleave_setting == 2) ? (40 * 576) : (40 * 72);
} else if (baud_rate == 1200) { } else if (baud_rate == 1200) {
@ -64,13 +48,14 @@ class SymbolFormation {
size_t current_index = 0; size_t current_index = 0;
while (current_index < symbol_data.size()) { while (current_index < symbol_data.size()) {
// Process unknown data block // Determine the size of the current unknown data block
size_t block_size = std::min(unknown_data_block_size, symbol_data.size() - current_index); size_t block_size = std::min(unknown_data_block_size, symbol_data.size() - current_index);
std::vector<uint8_t> unknown_data_block(symbol_data.begin() + current_index, symbol_data.begin() + current_index + block_size); std::vector<uint8_t> unknown_data_block(symbol_data.begin() + current_index, symbol_data.begin() + current_index + block_size);
current_index += block_size; current_index += block_size;
// Map the unknown data based on baud rate
if (baud_rate == 75) { if (baud_rate == 75) {
size_t set_size = (interleave_setting == 2) ? SET_SIZE_LONG : SET_SIZE_SHORT; size_t set_size = (interleave_setting == 2) ? 360 : 32;
for (size_t i = 0; i < unknown_data_block.size(); i += set_size) { for (size_t i = 0; i < unknown_data_block.size(); i += set_size) {
bool is_exceptional_set = (set_count % ((interleave_setting == 1) ? 45 : 360)) == 0; bool is_exceptional_set = (set_count % ((interleave_setting == 1) ? 45 : 360)) == 0;
std::vector<uint8_t> mapped_set = map75bpsSet(unknown_data_block, i, set_size, is_exceptional_set); std::vector<uint8_t> mapped_set = map75bpsSet(unknown_data_block, i, set_size, is_exceptional_set);
@ -78,14 +63,16 @@ class SymbolFormation {
set_count++; set_count++;
} }
} else { } else {
// For baud rates greater than 75 bps
std::vector<uint8_t> mapped_unknown_data = mapUnknownData(unknown_data_block); std::vector<uint8_t> mapped_unknown_data = mapUnknownData(unknown_data_block);
symbol_count += mapped_unknown_data.size(); symbol_count += mapped_unknown_data.size();
data_stream.insert(data_stream.end(), mapped_unknown_data.begin(), mapped_unknown_data.end()); data_stream.insert(data_stream.end(), mapped_unknown_data.begin(), mapped_unknown_data.end());
} }
// Insert probe data if we are at an interleaver block boundary
if (baud_rate > 75) { if (baud_rate > 75) {
bool inside_block = (symbol_count % interleaver_block_size) != 0; bool is_at_boundary = (symbol_count % interleaver_block_size) == 0;
std::vector<uint8_t> probe_data = generateProbeData(inside_block); std::vector<uint8_t> probe_data = generateProbeData(!is_at_boundary);
data_stream.insert(data_stream.end(), probe_data.begin(), probe_data.end()); data_stream.insert(data_stream.end(), probe_data.begin(), probe_data.end());
} }
} }
@ -108,113 +95,57 @@ class SymbolFormation {
bool is_frequency_hopping; bool is_frequency_hopping;
Scrambler scrambler = Scrambler(); Scrambler scrambler = Scrambler();
void appendProbeMapping(std::vector<uint8_t>& symbol_stream, uint8_t symbol, size_t repeat_count) { std::vector<uint8_t> mapChannelSymbolToTribitPattern(uint8_t symbol, bool repeat_twice = false) {
std::vector<uint8_t> tribit_pattern;
switch (symbol) { switch (symbol) {
case 0: case 0b000: // 000
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 0, 0, 0, 0, 0, 0, 0};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_0.begin(), Sync_Preamble_0.end());
}
break; break;
case 1: case 0b001: // 001
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 4, 0, 4, 0, 4, 0, 4};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_1.begin(), Sync_Preamble_1.end());
}
break; break;
case 2: case 0b010: // 010
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 0, 4, 4, 0, 0, 4, 4};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_2.begin(), Sync_Preamble_2.end());
}
break; break;
case 3: case 0b011: // 011
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 4, 4, 0, 0, 4, 4, 0};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_3.begin(), Sync_Preamble_3.end());
}
break; break;
case 4: case 0b100: // 100
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 0, 0, 0, 4, 4, 4, 4};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_4.begin(), Sync_Preamble_4.end());
}
break; break;
case 5: case 0b101: // 101
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 4, 0, 4, 4, 0, 4, 0};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_5.begin(), Sync_Preamble_5.end());
}
break; break;
case 6: case 0b110: // 110
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 0, 4, 4, 4, 4, 0, 0};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_6.begin(), Sync_Preamble_6.end());
}
break; break;
case 7: case 0b111: // 111
for (int i = 0; i < repeat_count; ++i) { tribit_pattern = {0, 4, 4, 0, 4, 0, 0, 4};
symbol_stream.insert(symbol_stream.end(), Sync_Preamble_7.begin(), Sync_Preamble_7.end());
}
break; break;
default: default:
throw std::invalid_argument("Invalid channel symbol"); throw std::invalid_argument("Invalid channel symbol");
} }
}
void append75bpsMapping(std::vector<uint8_t>& symbol_stream, uint8_t symbol, bool is_exceptional_set) { if (repeat_twice) {
if (is_exceptional_set) { // Repeat the pattern twice instead of four times for known symbols
switch (symbol) { tribit_pattern.insert(tribit_pattern.end(), tribit_pattern.begin(), tribit_pattern.end());
case 0:
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_0.begin(), baud75_exceptional_0.end());
}
break;
case 1:
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_1.begin(), baud75_exceptional_1.end());
}
break;
case 2:
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_2.begin(), baud75_exceptional_2.end());
}
break;
case 3:
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_3.begin(), baud75_exceptional_3.end());
}
break;
default:
throw std::invalid_argument("Invalid channel symbol");
}
} else { } else {
switch (symbol) { // Repeat the pattern four times as per Table XIII
case 0: tribit_pattern.insert(tribit_pattern.end(), tribit_pattern.begin(), tribit_pattern.end());
for (int i = 0; i < 8; ++i) { tribit_pattern.insert(tribit_pattern.end(), tribit_pattern.begin(), tribit_pattern.end());
symbol_stream.insert(symbol_stream.end(), baud75_normal_0.begin(), baud75_normal_0.end()); tribit_pattern.insert(tribit_pattern.end(), tribit_pattern.begin(), tribit_pattern.end());
}
break;
case 1:
for (int i = 0; i < 8; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_normal_1.begin(), baud75_normal_1.end());
}
break;
case 2:
for (int i = 0; i < 8; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_normal_2.begin(), baud75_normal_2.end());
}
break;
case 3:
for (int i = 0; i < 8; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_normal_3.begin(), baud75_normal_3.end());
}
break;
default:
throw std::invalid_argument("Invalid channel symbol");
}
} }
return tribit_pattern;
} }
std::vector<uint8_t> generateSyncPreamble() { std::vector<uint8_t> generateSyncPreamble() {
std::vector<uint8_t> preamble; std::vector<uint8_t> preamble;
size_t num_segments = (interleave_setting == 0) ? 3 : 24; size_t num_segments = (interleave_setting == 2) ? 24 : 3;
std::vector<uint8_t> segment_sequence = {0,1,3,0,1,3,1,2,0}; std::vector<uint8_t> segment_sequence = {0, 1, 3, 0, 1, 3, 1, 2, 0};
uint8_t D1, D2; uint8_t D1, D2;
if (baud_rate == 4800) { if (baud_rate == 4800) {
@ -256,16 +187,15 @@ class SymbolFormation {
for (size_t i = 0; i < num_segments; i++) { for (size_t i = 0; i < num_segments; i++) {
std::vector<uint8_t> full_segment_sequence = segment_sequence; std::vector<uint8_t> full_segment_sequence = segment_sequence;
C1 = (1 << 2) | C1;
C2 = (1 << 2) | C2;
C3 = (1 << 2) | C3;
full_segment_sequence.push_back(C1); full_segment_sequence.push_back(C1);
full_segment_sequence.push_back(C2); full_segment_sequence.push_back(C2);
full_segment_sequence.push_back(C3); full_segment_sequence.push_back(C3);
full_segment_sequence.push_back(0); full_segment_sequence.push_back(0);
preamble.insert(preamble.end(), full_segment_sequence.begin(), full_segment_sequence.end()); for (uint8_t symbol : full_segment_sequence) {
std::vector<uint8_t> mapped_tribit = mapChannelSymbolToTribitPattern(symbol);
preamble.insert(preamble.end(), mapped_tribit.begin(), mapped_tribit.end());
}
if (C3 > 0) { if (C3 > 0) {
C3--; C3--;
@ -279,16 +209,13 @@ class SymbolFormation {
} }
} }
std::vector<uint8_t> final_preamble; return preamble;
for (auto& symbol : preamble) {
appendProbeMapping(final_preamble, symbol, 4);
}
return final_preamble;
} }
std::vector<uint8_t> generateProbeData(bool is_inside_block) { std::vector<uint8_t> generateProbeData(bool is_inside_block) {
std::vector<uint8_t> probe_data; std::vector<uint8_t> probe_data;
// Determine interleaver block size based on baud rate and interleave setting
size_t interleaver_block_size; size_t interleaver_block_size;
if (baud_rate == 2400) { if (baud_rate == 2400) {
interleaver_block_size = (interleave_setting == 2) ? (40 * 576) : (40 * 72); interleaver_block_size = (interleave_setting == 2) ? (40 * 576) : (40 * 72);
@ -300,10 +227,11 @@ class SymbolFormation {
interleaver_block_size = (interleave_setting == 2) ? (20 * 36) : (10 * 9); interleaver_block_size = (interleave_setting == 2) ? (20 * 36) : (10 * 9);
} }
// If we are inside an interleaver block, the probe data is filled with zeros
if (is_inside_block) {
probe_data.resize(interleaver_block_size, 0x00); probe_data.resize(interleaver_block_size, 0x00);
} else {
if (!is_inside_block) { // Set the known symbol patterns for D1 and D2 based on Table XI
// Set the known symbol patterns for D1 and D2 based on Table XI and Table XIII
uint8_t D1, D2; uint8_t D1, D2;
if (baud_rate == 4800) { if (baud_rate == 4800) {
D1 = 7; D2 = 6; D1 = 7; D2 = 6;
@ -324,24 +252,94 @@ class SymbolFormation {
} else if (baud_rate == 150) { } else if (baud_rate == 150) {
D1 = (interleave_setting <= 1) ? 7 : 5; D1 = (interleave_setting <= 1) ? 7 : 5;
D2 = 4; D2 = 4;
} else if (baud_rate == 75) {
D1 = (interleave_setting <= 1) ? 7 : 5;
D2 = 5;
} else { } else {
throw std::invalid_argument("Invalid baud rate for generateProbeData"); throw std::invalid_argument("Invalid baud rate for generateProbeData");
} }
std::vector<uint8_t> final_probe_data; // Generate the known symbol patterns D1 and D2, repeated twice
for (auto symbol : probe_data) { std::vector<uint8_t> d1_pattern = mapChannelSymbolToTribitPattern(D1, true);
appendProbeMapping(final_probe_data, symbol, 2); std::vector<uint8_t> d2_pattern = mapChannelSymbolToTribitPattern(D2, true);
}
probe_data.insert(probe_data.end(), d1_pattern.begin(), d1_pattern.end());
probe_data.insert(probe_data.end(), d2_pattern.begin(), d2_pattern.end());
} }
return probe_data; return probe_data;
} }
void append75bpsMapping(std::vector<uint8_t>& symbol_stream, uint8_t symbol, bool is_exceptional_set) {
if (is_exceptional_set) {
switch (symbol) {
case 0:
// Exceptional set mapping for symbol 00: (0000 4444) repeated 4 times
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_0.begin(), baud75_exceptional_0.end());
}
break;
case 1:
// Exceptional set mapping for symbol 01: (0404 4040) repeated 4 times
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_1.begin(), baud75_exceptional_1.end());
}
break;
case 2:
// Exceptional set mapping for symbol 10: (0044 4400) repeated 4 times
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_2.begin(), baud75_exceptional_2.end());
}
break;
case 3:
// Exceptional set mapping for symbol 11: (0440 4004) repeated 4 times
for (int i = 0; i < 4; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_exceptional_3.begin(), baud75_exceptional_3.end());
}
break;
default:
throw std::invalid_argument("Invalid channel symbol for exceptional set mapping");
}
} else {
switch (symbol) {
case 0:
// Normal set mapping for symbol 00: (0000) repeated 8 times
for (int i = 0; i < 8; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_normal_0.begin(), baud75_normal_0.end());
}
break;
case 1:
// Normal set mapping for symbol 01: (0404) repeated 8 times
for (int i = 0; i < 8; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_normal_1.begin(), baud75_normal_1.end());
}
break;
case 2:
// Normal set mapping for symbol 10: (0044) repeated 8 times
for (int i = 0; i < 8; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_normal_2.begin(), baud75_normal_2.end());
}
break;
case 3:
// Normal set mapping for symbol 11: (0440) repeated 8 times
for (int i = 0; i < 8; ++i) {
symbol_stream.insert(symbol_stream.end(), baud75_normal_3.begin(), baud75_normal_3.end());
}
break;
default:
throw std::invalid_argument("Invalid channel symbol for normal set mapping");
}
}
}
std::vector<uint8_t> map75bpsSet(const std::vector<uint8_t>& data, size_t start_index, size_t set_size, bool is_exceptional_set) { std::vector<uint8_t> map75bpsSet(const std::vector<uint8_t>& data, size_t start_index, size_t set_size, bool is_exceptional_set) {
std::vector<uint8_t> mapped_set; std::vector<uint8_t> mapped_set;
for (auto symbol : data) { // Make sure we do not exceed the size of the data vector
append75bpsMapping(mapped_set, symbol, is_exceptional_set); size_t end_index = std::min(start_index + set_size, data.size());
for (size_t i = start_index; i < end_index; ++i) {
append75bpsMapping(mapped_set, data[i], is_exceptional_set);
} }
return mapped_set; return mapped_set;
@ -351,23 +349,22 @@ class SymbolFormation {
std::vector<uint8_t> mapped_data; std::vector<uint8_t> mapped_data;
for (auto symbol : data) { for (auto symbol : data) {
if (baud_rate >= 2400) { if (baud_rate >= 2400) {
// Pass tribit symbols as-is // Pass tribit symbols as-is
mapped_data.push_back(symbol); mapped_data.push_back(symbol);
} else if (baud_rate == 1200) { } else if (baud_rate == 1200) {
// Map dibit symbols to tribit symbols 0, 2, 4, 6 // Map dibit symbols to tribit symbols 0, 2, 4, 6
switch (symbol) { switch (symbol) {
case 0: case 0b00:
mapped_data.push_back(0); mapped_data.push_back(0);
break; break;
case 1: case 0b01:
mapped_data.push_back(2); mapped_data.push_back(2);
break; break;
case 2: case 0b10:
mapped_data.push_back(4); mapped_data.push_back(4);
break; break;
case 3: case 0b11:
mapped_data.push_back(6); mapped_data.push_back(6);
break; break;
default: default:
@ -375,7 +372,13 @@ class SymbolFormation {
} }
} else if (baud_rate >= 150 && baud_rate <= 600) { } else if (baud_rate >= 150 && baud_rate <= 600) {
// Map binary symbols to tribit symbols 0 and 4 // Map binary symbols to tribit symbols 0 and 4
mapped_data.push_back(symbol == 0 ? 0 : 4); if (symbol == 0) {
mapped_data.push_back(0);
} else if (symbol == 1) {
mapped_data.push_back(4);
} else {
throw std::invalid_argument("Invalid binary symbol for baud rates 150 to 600 bps");
}
} else { } else {
throw std::invalid_argument("Invalid baud rate for mapUnknownData"); throw std::invalid_argument("Invalid baud rate for mapUnknownData");
} }