167 lines
6.0 KiB
C++
167 lines
6.0 KiB
C++
#ifndef FILTERS_H
|
|
#define FILTERS_H
|
|
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <fftw3.h>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
class TapGenerators {
|
|
public:
|
|
std::vector<double> generateSRRCTaps(const size_t num_taps, const double sample_rate, const double symbol_rate, const double rolloff) const {
|
|
std::vector<double> freq_response(num_taps, 0.0);
|
|
std::vector<double> taps(num_taps);
|
|
|
|
double fn = symbol_rate / 2.0;
|
|
double f_step = sample_rate / num_taps;
|
|
|
|
for (size_t i = 0; i < num_taps / 2; i++) {
|
|
double f = i * f_step;
|
|
|
|
if (f <= fn * (1 - rolloff)) {
|
|
freq_response[i] = 1.0;
|
|
} else if (f <= fn * (1 + rolloff)) {
|
|
freq_response[i] = 0.5 * (1 - std::sin(M_PI * (f - fn * (1 - rolloff)) / (2 * rolloff * fn)));
|
|
} else {
|
|
freq_response[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
for (size_t i = num_taps / 2; i < num_taps; i++) {
|
|
freq_response[i] = freq_response[num_taps - i - 1];
|
|
}
|
|
|
|
fftw_complex* freq_domain = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * num_taps);
|
|
for (size_t i = 0; i < num_taps; i++) {
|
|
freq_domain[i][0] = freq_response[i];
|
|
freq_domain[i][1] = 0.0;
|
|
}
|
|
|
|
std::vector<double> time_domain_taps(num_taps, 0.0);
|
|
|
|
fftw_plan plan = fftw_plan_dft_c2r_1d(num_taps, freq_domain, time_domain_taps.data(), FFTW_ESTIMATE);
|
|
fftw_execute(plan);
|
|
fftw_destroy_plan(plan);
|
|
fftw_free(freq_domain);
|
|
|
|
double norm_factor = std::sqrt(std::accumulate(time_domain_taps.begin(), time_domain_taps.end(), 0.0, [](double sum, double val) { return sum + val * val; }));
|
|
for (auto& tap : time_domain_taps) {
|
|
tap /= norm_factor;
|
|
}
|
|
|
|
return time_domain_taps;
|
|
}
|
|
|
|
std::vector<double> generateLowpassTaps(const size_t num_taps, const double cutoff_freq, const double sample_rate) const {
|
|
std::vector<double> freq_response(num_taps, 0.0);
|
|
std::vector<double> taps(num_taps);
|
|
|
|
double fn = cutoff_freq / 2.0;
|
|
double f_step = sample_rate / num_taps;
|
|
|
|
// Define frequency response
|
|
for (size_t i = 0; i < num_taps / 2; i++) {
|
|
double f = i * f_step;
|
|
if (f <= fn) {
|
|
freq_response[i] = 1.0; // Passband
|
|
} else {
|
|
freq_response[i] = 0.0; // Stopband
|
|
}
|
|
}
|
|
|
|
// Mirror the second half of the response for symmetry
|
|
for (size_t i = num_taps / 2; i < num_taps; i++) {
|
|
freq_response[i] = freq_response[num_taps - i - 1];
|
|
}
|
|
|
|
// Perform inverse FFT to get time-domain taps
|
|
fftw_complex* freq_domain = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * num_taps);
|
|
for (size_t i = 0; i < num_taps; i++) {
|
|
freq_domain[i][0] = freq_response[i];
|
|
freq_domain[i][1] = 0.0;
|
|
}
|
|
|
|
std::vector<double> time_domain_taps(num_taps, 0.0);
|
|
fftw_plan plan = fftw_plan_dft_c2r_1d(num_taps, freq_domain, time_domain_taps.data(), FFTW_ESTIMATE);
|
|
fftw_execute(plan);
|
|
fftw_destroy_plan(plan);
|
|
fftw_free(freq_domain);
|
|
|
|
// Normalize filter taps
|
|
double norm_factor = std::sqrt(std::accumulate(time_domain_taps.begin(), time_domain_taps.end(), 0.0, [](double sum, double val) { return sum + val * val; }));
|
|
for (auto& tap : time_domain_taps) {
|
|
tap /= norm_factor;
|
|
}
|
|
|
|
return time_domain_taps;
|
|
}
|
|
};
|
|
|
|
class Filter {
|
|
public:
|
|
Filter(const std::vector<double>& _filter_taps) : filter_taps(_filter_taps), buffer(_filter_taps.size(), 0.0), buffer_index(0) {}
|
|
|
|
double filterSample(const double sample) {
|
|
buffer[buffer_index] = std::complex<double>(sample,0.0);
|
|
double filtered_val = 0.0;
|
|
for (size_t j = 0; j < filter_taps.size(); j++) {
|
|
size_t signal_index = (buffer_index + j) % filter_taps.size();
|
|
filtered_val += filter_taps[j] * buffer[signal_index].real();
|
|
}
|
|
|
|
buffer_index = (buffer_index + 1) % filter_taps.size();
|
|
return filtered_val;
|
|
}
|
|
|
|
std::complex<double> filterSample(const std::complex<double>& sample) {
|
|
buffer[buffer_index] = sample;
|
|
std::complex<double> filtered_val = std::complex<double>(0.0, 0.0);
|
|
for (size_t j = 0; j < filter_taps.size(); j++) {
|
|
size_t signal_index = (buffer_index + j) % filter_taps.size();
|
|
filtered_val += filter_taps[j] * buffer[signal_index];
|
|
}
|
|
|
|
buffer_index = (buffer_index + 1) % filter_taps.size();
|
|
return filtered_val;
|
|
}
|
|
|
|
std::vector<double> applyFilter(const std::vector<double>& signal) {
|
|
std::vector<double> filtered_signal(signal.size(), 0.0);
|
|
|
|
// Convolve the signal with the filter taps
|
|
for (size_t i = 0; i < signal.size(); ++i) {
|
|
filtered_signal[i] = filterSample(signal[i]);
|
|
}
|
|
|
|
return filtered_signal;
|
|
}
|
|
|
|
std::vector<std::complex<double>> applyFilter(const std::vector<std::complex<double>>& signal) {
|
|
std::vector<std::complex<double>> filtered_signal(signal.size(), std::complex<double>(0.0, 0.0));
|
|
|
|
// Convolve the signal with the filter taps
|
|
for (size_t i = 0; i < signal.size(); ++i) {
|
|
filtered_signal[i] = filterSample(signal[i]);
|
|
}
|
|
|
|
return filtered_signal;
|
|
}
|
|
|
|
private:
|
|
std::vector<double> filter_taps;
|
|
std::vector<std::complex<double>> buffer;
|
|
size_t buffer_index;
|
|
};
|
|
|
|
class SRRCFilter : public Filter {
|
|
public:
|
|
SRRCFilter(const size_t num_taps, const double sample_rate, const double symbol_rate, const double rolloff) : Filter(TapGenerators().generateSRRCTaps(num_taps, sample_rate, symbol_rate, rolloff)) {}
|
|
};
|
|
|
|
class LowPassFilter : public Filter {
|
|
public:
|
|
LowPassFilter(const size_t num_taps, const double cutoff_freq, const double sample_rate) : Filter(TapGenerators().generateLowpassTaps(num_taps, cutoff_freq, sample_rate)) {}
|
|
};
|
|
|
|
#endif /* FILTERS_H */ |