xlxd/ambed/cagc.cpp

82 lines
2.5 KiB
C++

//
// cagc.cpp
// ambed
//
// Created by Jean-Luc Deltombe (LX3JL) on 28/04/2017.
// Copyright © 2015 Jean-Luc Deltombe (LX3JL). All rights reserved.
//
// ----------------------------------------------------------------------------
// This file is part of ambed.
//
// xlxd is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// xlxd is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Foobar. If not, see <http://www.gnu.org/licenses/>.
// ----------------------------------------------------------------------------
// Geoffrey Merck F4FXL / KC3FRA AGC code borrowed from Liquid DSP
// Only took the parts we need qnd recoeded it to be close the XLX coding style
// https://github.com/jgaeddert/liquid-dsp/blob/master/src/agc/src/agc.c
#include "main.h"
#include <math.h>
#include "cagc.h"
////////////////////////////////////////////////////////////////////////////////////////
// constructor
CAGC::CAGC(float initialLeveldB)
{
// set internal gain appropriately
m_g = powf(10.0f, -initialLeveldB/20.0f);
// ensure resulting gain is not arbitrarily low
if (m_g < 1e-16f)
m_g = 1e-16f;
m_scale = 1.0f;
m_bandwidth = 1e-2f;
m_y2_prime = 1.0f;
}
void CAGC::Apply(uint8 * voice, int size)
{
for (int i = 0; i < size; i+=2)
{
//Get the sample
float _x = (float)(short)MAKEWORD(voice[i+1], voice[i]);
//apply AGC
// apply gain to input sample
float _y = _x * m_g;
// compute output signal energy
float y2 = _y * _y;
// smooth energy estimate using single-pole low-pass filter
m_y2_prime = (1.0f - m_alpha) * m_y2_prime + m_alpha*y2;
// update gain according to output energy
if (m_y2_prime > 1e-6f)
m_g *= exp( -0.5f * m_alpha * log(m_y2_prime) );
// clamp to 120 dB gain
if (m_g > 1e6f)
m_g = 1e6f;
// apply output scale
_y *= m_scale;
//write processed sample back to it
voice[i] = HIBYTE((short)_y);
voice[i+1] = LOBYTE((short)_y);
}
}