2003-03-02 20:03:50 -05:00
|
|
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
|
*
|
|
|
|
* LibTomMath is library that provides for multiple-precision
|
|
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
|
|
*
|
|
|
|
* The library is designed directly after the MPI library by
|
|
|
|
* Michael Fromberger but has been written from scratch with
|
|
|
|
* additional optimizations in place.
|
|
|
|
*
|
|
|
|
* The library is free for all purposes without any express
|
|
|
|
* guarantee it works.
|
|
|
|
*
|
|
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
|
|
|
|
*/
|
2003-03-12 21:12:16 -05:00
|
|
|
#include "mycrypt.h"
|
|
|
|
|
2003-03-02 20:03:50 -05:00
|
|
|
#ifndef BN_H_
|
|
|
|
#define BN_H_
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <ctype.h>
|
|
|
|
#include <limits.h>
|
|
|
|
|
|
|
|
#undef MIN
|
|
|
|
#define MIN(x,y) ((x)<(y)?(x):(y))
|
|
|
|
#undef MAX
|
|
|
|
#define MAX(x,y) ((x)>(y)?(x):(y))
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/* some default configurations.
|
|
|
|
*
|
|
|
|
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
|
|
|
|
* A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
|
|
|
|
*
|
|
|
|
* At the very least a mp_digit must be able to hold 7 bits
|
|
|
|
* [any size beyond that is ok provided it overflow the data type]
|
|
|
|
*/
|
|
|
|
#ifdef MP_8BIT
|
|
|
|
typedef unsigned char mp_digit;
|
|
|
|
typedef unsigned short mp_word;
|
|
|
|
#elif defined(MP_16BIT)
|
|
|
|
typedef unsigned short mp_digit;
|
|
|
|
typedef unsigned long mp_word;
|
|
|
|
#else
|
|
|
|
#ifndef CRYPT
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
typedef unsigned __int64 ulong64;
|
|
|
|
typedef signed __int64 long64;
|
|
|
|
#else
|
|
|
|
typedef unsigned long long ulong64;
|
|
|
|
typedef signed long long long64;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* default case */
|
|
|
|
typedef unsigned long mp_digit;
|
|
|
|
typedef ulong64 mp_word;
|
|
|
|
|
|
|
|
#define DIGIT_BIT 28
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef DIGIT_BIT
|
|
|
|
#define DIGIT_BIT ((CHAR_BIT * sizeof(mp_digit) - 1)) /* bits per digit */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define MP_DIGIT_BIT DIGIT_BIT
|
|
|
|
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
|
|
|
|
#define MP_DIGIT_MAX MP_MASK
|
|
|
|
|
|
|
|
/* equalities */
|
|
|
|
#define MP_LT -1 /* less than */
|
|
|
|
#define MP_EQ 0 /* equal to */
|
|
|
|
#define MP_GT 1 /* greater than */
|
|
|
|
|
|
|
|
#define MP_ZPOS 0 /* positive integer */
|
|
|
|
#define MP_NEG 1 /* negative */
|
|
|
|
|
|
|
|
#define MP_OKAY 0 /* ok result */
|
|
|
|
#define MP_MEM -2 /* out of mem */
|
|
|
|
#define MP_VAL -3 /* invalid input */
|
|
|
|
#define MP_RANGE MP_VAL
|
|
|
|
|
|
|
|
typedef int mp_err;
|
|
|
|
|
|
|
|
/* you'll have to tune these... */
|
|
|
|
extern int KARATSUBA_MUL_CUTOFF,
|
|
|
|
KARATSUBA_SQR_CUTOFF,
|
|
|
|
MONTGOMERY_EXPT_CUTOFF;
|
|
|
|
|
|
|
|
#define MP_PREC 64 /* default digits of precision */
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
int used, alloc, sign;
|
|
|
|
mp_digit *dp;
|
|
|
|
} mp_int;
|
|
|
|
|
|
|
|
#define USED(m) ((m)->used)
|
|
|
|
#define DIGIT(m,k) ((m)->dp[k])
|
|
|
|
#define SIGN(m) ((m)->sign)
|
|
|
|
|
|
|
|
/* ---> init and deinit bignum functions <--- */
|
|
|
|
|
|
|
|
/* init a bignum */
|
|
|
|
int mp_init(mp_int *a);
|
|
|
|
|
|
|
|
/* free a bignum */
|
|
|
|
void mp_clear(mp_int *a);
|
|
|
|
|
|
|
|
/* exchange two ints */
|
|
|
|
void mp_exch(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* shrink ram required for a bignum */
|
|
|
|
int mp_shrink(mp_int *a);
|
|
|
|
|
|
|
|
/* ---> Basic Manipulations <--- */
|
|
|
|
|
|
|
|
#define mp_iszero(a) (((a)->used == 0) ? 1 : 0)
|
|
|
|
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? 1 : 0)
|
|
|
|
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? 1 : 0)
|
|
|
|
|
|
|
|
/* set to zero */
|
|
|
|
void mp_zero(mp_int *a);
|
|
|
|
|
|
|
|
/* set to a digit */
|
|
|
|
void mp_set(mp_int *a, mp_digit b);
|
|
|
|
|
|
|
|
/* set a 32-bit const */
|
|
|
|
int mp_set_int(mp_int *a, unsigned long b);
|
|
|
|
|
|
|
|
/* grow an int to a given size */
|
|
|
|
int mp_grow(mp_int *a, int size);
|
|
|
|
|
|
|
|
/* init to a given number of digits */
|
|
|
|
int mp_init_size(mp_int *a, int size);
|
|
|
|
|
|
|
|
/* copy, b = a */
|
|
|
|
int mp_copy(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* inits and copies, a = b */
|
|
|
|
int mp_init_copy(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* trim unused digits */
|
|
|
|
void mp_clamp(mp_int *a);
|
|
|
|
|
|
|
|
/* ---> digit manipulation <--- */
|
|
|
|
|
|
|
|
/* right shift by "b" digits */
|
|
|
|
void mp_rshd(mp_int *a, int b);
|
|
|
|
|
|
|
|
/* left shift by "b" digits */
|
|
|
|
int mp_lshd(mp_int *a, int b);
|
|
|
|
|
|
|
|
/* c = a / 2^b */
|
|
|
|
int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
|
|
|
|
|
|
|
|
/* b = a/2 */
|
|
|
|
int mp_div_2(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* c = a * 2^b */
|
|
|
|
int mp_mul_2d(mp_int *a, int b, mp_int *c);
|
|
|
|
|
|
|
|
/* b = a*2 */
|
|
|
|
int mp_mul_2(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* c = a mod 2^d */
|
|
|
|
int mp_mod_2d(mp_int *a, int b, mp_int *c);
|
|
|
|
|
|
|
|
/* computes a = 2^b */
|
|
|
|
int mp_2expt(mp_int *a, int b);
|
|
|
|
|
|
|
|
/* makes a pseudo-random int of a given size */
|
|
|
|
int mp_rand(mp_int *a, int digits);
|
|
|
|
|
|
|
|
/* ---> binary operations <--- */
|
|
|
|
/* c = a XOR b */
|
|
|
|
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = a OR b */
|
|
|
|
int mp_or(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = a AND b */
|
|
|
|
int mp_and(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* ---> Basic arithmetic <--- */
|
|
|
|
|
|
|
|
/* b = -a */
|
|
|
|
int mp_neg(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* b = |a| */
|
|
|
|
int mp_abs(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* compare a to b */
|
|
|
|
int mp_cmp(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* compare |a| to |b| */
|
|
|
|
int mp_cmp_mag(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* c = a + b */
|
|
|
|
int mp_add(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
|
|
|
|
/* c = a - b */
|
|
|
|
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = a * b */
|
|
|
|
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* b = a^2 */
|
|
|
|
int mp_sqr(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* a/b => cb + d == a */
|
|
|
|
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
|
|
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* ---> single digit functions <--- */
|
|
|
|
|
|
|
|
/* compare against a single digit */
|
|
|
|
int mp_cmp_d(mp_int *a, mp_digit b);
|
|
|
|
|
|
|
|
/* c = a + b */
|
|
|
|
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = a - b */
|
|
|
|
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = a * b */
|
|
|
|
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
|
|
|
|
/* a/b => cb + d == a */
|
|
|
|
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
|
|
|
|
|
|
|
|
/* c = a^b */
|
|
|
|
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
|
|
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
|
|
|
|
|
|
|
|
/* ---> number theory <--- */
|
|
|
|
|
|
|
|
/* d = a + b (mod c) */
|
|
|
|
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
|
|
|
|
/* d = a - b (mod c) */
|
|
|
|
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
|
|
|
|
/* d = a * b (mod c) */
|
|
|
|
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
|
|
|
|
/* c = a * a (mod b) */
|
|
|
|
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = 1/a (mod b) */
|
|
|
|
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = (a, b) */
|
|
|
|
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* c = [a, b] or (a*b)/(a, b) */
|
|
|
|
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* finds one of the b'th root of a, such that |c|^b <= |a|
|
|
|
|
*
|
|
|
|
* returns error if a < 0 and b is even
|
|
|
|
*/
|
|
|
|
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
|
|
|
|
/* shortcut for square root */
|
|
|
|
#define mp_sqrt(a, b) mp_n_root(a, 2, b)
|
|
|
|
|
|
|
|
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
|
|
|
int mp_jacobi(mp_int *a, mp_int *n, int *c);
|
|
|
|
|
|
|
|
/* used to setup the Barrett reduction for a given modulus b */
|
|
|
|
int mp_reduce_setup(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* Barrett Reduction, computes a (mod b) with a precomputed value c
|
|
|
|
*
|
|
|
|
* Assumes that 0 < a <= b^2, note if 0 > a > -(b^2) then you can merely
|
|
|
|
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
|
|
|
|
*/
|
|
|
|
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
|
|
|
|
/* setups the montgomery reduction */
|
|
|
|
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
|
|
|
|
|
|
|
|
/* computes a = B^n mod b without division or multiplication useful for
|
|
|
|
* normalizing numbers in a Montgomery system.
|
|
|
|
*/
|
|
|
|
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
|
|
|
|
|
|
|
|
/* computes xR^-1 == x (mod N) via Montgomery Reduction */
|
|
|
|
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
|
|
|
|
|
|
|
/* d = a^b (mod c) */
|
|
|
|
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
|
|
|
|
/* ---> radix conversion <--- */
|
|
|
|
int mp_count_bits(mp_int *a);
|
|
|
|
|
|
|
|
int mp_unsigned_bin_size(mp_int *a);
|
|
|
|
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
|
|
|
|
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
|
|
|
|
|
|
|
|
int mp_signed_bin_size(mp_int *a);
|
|
|
|
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
|
|
|
|
int mp_to_signed_bin(mp_int *a, unsigned char *b);
|
|
|
|
|
|
|
|
int mp_read_radix(mp_int *a, char *str, int radix);
|
|
|
|
int mp_toradix(mp_int *a, char *str, int radix);
|
|
|
|
int mp_radix_size(mp_int *a, int radix);
|
|
|
|
|
|
|
|
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
|
|
|
|
#define mp_raw_size(mp) mp_signed_bin_size(mp)
|
|
|
|
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
|
|
|
|
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
|
|
|
|
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
|
|
|
|
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
|
|
|
|
|
|
|
|
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
|
|
|
|
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
|
|
|
|
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
|
|
|
|
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
|
|
|
|
|
|
|
|
/* lowlevel functions, do not call! */
|
|
|
|
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
|
|
|
|
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
|
|
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
|
|
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
|
|
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
|
|
int fast_s_mp_sqr(mp_int *a, mp_int *b);
|
|
|
|
int s_mp_sqr(mp_int *a, mp_int *b);
|
|
|
|
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
|
|
|
|
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
|
|
|
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y);
|
|
|
|
void bn_reverse(unsigned char *s, int len);
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|