2004-05-12 20:42:16 +00:00
|
|
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
|
|
*
|
|
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
|
|
* algorithms in a highly modular and flexible manner.
|
|
|
|
*
|
|
|
|
* The library is free for all purposes without any express
|
|
|
|
* guarantee it works.
|
|
|
|
*/
|
2004-12-30 23:55:53 +00:00
|
|
|
#include "tomcrypt.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
@file dsa_make_key.c
|
|
|
|
DSA implementation, generate a DSA key, Tom St Denis
|
|
|
|
*/
|
2004-05-12 20:42:16 +00:00
|
|
|
|
2007-07-20 17:48:02 +00:00
|
|
|
#ifdef LTC_MDSA
|
2004-05-12 20:42:16 +00:00
|
|
|
|
2004-12-30 23:55:53 +00:00
|
|
|
/**
|
2017-06-08 22:25:24 +02:00
|
|
|
Create DSA parameters (INTERNAL ONLY, not part of public API)
|
2014-01-27 21:10:41 +01:00
|
|
|
@param prng An active PRNG state
|
|
|
|
@param wprng The index of the PRNG desired
|
|
|
|
@param group_size Size of the multiplicative group (octets)
|
|
|
|
@param modulus_size Size of the modulus (octets)
|
|
|
|
@param p [out] bignum where generated 'p' is stored (must be initialized by caller)
|
|
|
|
@param q [out] bignum where generated 'q' is stored (must be initialized by caller)
|
|
|
|
@param g [out] bignum where generated 'g' is stored (must be initialized by caller)
|
|
|
|
@return CRYPT_OK if successful, upon error this function will free all allocated memory
|
|
|
|
*/
|
2017-06-08 22:25:24 +02:00
|
|
|
static int dsa_make_params(prng_state *prng, int wprng, int group_size, int modulus_size, void *p, void *q, void *g)
|
2014-01-27 21:10:41 +01:00
|
|
|
{
|
|
|
|
unsigned long L, N, n, outbytes, seedbytes, counter, j, i;
|
|
|
|
int err, res, mr_tests_q, mr_tests_p, found_p, found_q, hash;
|
|
|
|
unsigned char *wbuf, *sbuf, digest[MAXBLOCKSIZE];
|
|
|
|
void *t2L1, *t2N1, *t2q, *t2seedlen, *U, *W, *X, *c, *h, *e, *seedinc;
|
|
|
|
|
|
|
|
/* check size */
|
|
|
|
if (group_size >= LTC_MDSA_MAX_GROUP || group_size < 1 || group_size >= modulus_size) {
|
|
|
|
return CRYPT_INVALID_ARG;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* FIPS-186-4 A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
|
|
|
|
*
|
|
|
|
* L = The desired length of the prime p (in bits e.g. L = 1024)
|
|
|
|
* N = The desired length of the prime q (in bits e.g. N = 160)
|
|
|
|
* seedlen = The desired bit length of the domain parameter seed; seedlen shallbe equal to or greater than N
|
|
|
|
* outlen = The bit length of Hash function
|
|
|
|
*
|
|
|
|
* 1. Check that the (L, N)
|
|
|
|
* 2. If (seedlen <N), then return INVALID.
|
|
|
|
* 3. n = ceil(L / outlen) - 1
|
|
|
|
* 4. b = L- 1 - (n * outlen)
|
|
|
|
* 5. domain_parameter_seed = an arbitrary sequence of seedlen bits
|
|
|
|
* 6. U = Hash (domain_parameter_seed) mod 2^(N-1)
|
|
|
|
* 7. q = 2^(N-1) + U + 1 - (U mod 2)
|
|
|
|
* 8. Test whether or not q is prime as specified in Appendix C.3
|
|
|
|
* 9. If qis not a prime, then go to step 5.
|
|
|
|
* 10. offset = 1
|
|
|
|
* 11. For counter = 0 to (4L- 1) do {
|
|
|
|
* For j=0 to n do {
|
|
|
|
* Vj = Hash ((domain_parameter_seed+ offset + j) mod 2^seedlen
|
|
|
|
* }
|
|
|
|
* W = V0 + (V1 *2^outlen) + ... + (Vn-1 * 2^((n-1) * outlen)) + ((Vn mod 2^b) * 2^(n * outlen))
|
|
|
|
* X = W + 2^(L-1) Comment: 0 <= W < 2^(L-1); hence 2^(L-1) <= X < 2^L
|
|
|
|
* c = X mod 2*q
|
|
|
|
* p = X - (c - 1) Comment: p ~ 1 (mod 2*q)
|
|
|
|
* If (p >= 2^(L-1)) {
|
|
|
|
* Test whether or not p is prime as specified in Appendix C.3.
|
|
|
|
* If p is determined to be prime, then return VALID and the values of p, qand (optionally) the values of domain_parameter_seed and counter
|
|
|
|
* }
|
|
|
|
* offset = offset + n + 1 Comment: Increment offset
|
|
|
|
* }
|
|
|
|
*/
|
|
|
|
|
|
|
|
seedbytes = group_size;
|
|
|
|
L = modulus_size * 8;
|
|
|
|
N = group_size * 8;
|
|
|
|
|
2017-06-14 16:57:27 +02:00
|
|
|
/* XXX-TODO no Lucas test */
|
|
|
|
#ifdef LTC_MPI_HAS_LUCAS_TEST
|
2014-01-27 21:10:41 +01:00
|
|
|
/* M-R tests (when followed by one Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
|
|
|
|
mr_tests_p = (L <= 2048) ? 3 : 2;
|
|
|
|
if (N <= 160) { mr_tests_q = 19; }
|
|
|
|
else if (N <= 224) { mr_tests_q = 24; }
|
|
|
|
else { mr_tests_q = 27; }
|
2017-06-14 16:57:27 +02:00
|
|
|
#else
|
|
|
|
/* M-R tests (without Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
|
|
|
|
if (L <= 1024) { mr_tests_p = 40; }
|
|
|
|
else if (L <= 2048) { mr_tests_p = 56; }
|
|
|
|
else { mr_tests_p = 64; }
|
|
|
|
|
|
|
|
if (N <= 160) { mr_tests_q = 40; }
|
|
|
|
else if (N <= 224) { mr_tests_q = 56; }
|
|
|
|
else { mr_tests_q = 64; }
|
|
|
|
#endif
|
2014-01-27 21:10:41 +01:00
|
|
|
|
|
|
|
if (N <= 256) {
|
|
|
|
hash = register_hash(&sha256_desc);
|
|
|
|
}
|
|
|
|
else if (N <= 384) {
|
|
|
|
hash = register_hash(&sha384_desc);
|
|
|
|
}
|
|
|
|
else if (N <= 512) {
|
|
|
|
hash = register_hash(&sha512_desc);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return CRYPT_INVALID_ARG; /* group_size too big */
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; }
|
|
|
|
outbytes = hash_descriptor[hash].hashsize;
|
|
|
|
|
|
|
|
n = ((L + outbytes*8 - 1) / (outbytes*8)) - 1;
|
|
|
|
|
|
|
|
if ((wbuf = XMALLOC((n+1)*outbytes)) == NULL) { err = CRYPT_MEM; goto cleanup3; }
|
|
|
|
if ((sbuf = XMALLOC(seedbytes)) == NULL) { err = CRYPT_MEM; goto cleanup2; }
|
|
|
|
|
|
|
|
err = mp_init_multi(&t2L1, &t2N1, &t2q, &t2seedlen, &U, &W, &X, &c, &h, &e, &seedinc, NULL);
|
2014-05-09 22:43:29 +02:00
|
|
|
if (err != CRYPT_OK) { goto cleanup1; }
|
2014-01-27 21:10:41 +01:00
|
|
|
|
|
|
|
if ((err = mp_2expt(t2L1, L-1)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* t2L1 = 2^(L-1) */
|
|
|
|
if ((err = mp_2expt(t2N1, N-1)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* t2N1 = 2^(N-1) */
|
|
|
|
if ((err = mp_2expt(t2seedlen, seedbytes*8)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* t2seedlen = 2^seedlen */
|
|
|
|
|
|
|
|
for(found_p=0; !found_p;) {
|
|
|
|
/* q */
|
|
|
|
for(found_q=0; !found_q;) {
|
|
|
|
if (prng_descriptor[wprng].read(sbuf, seedbytes, prng) != seedbytes) { err = CRYPT_ERROR_READPRNG; goto cleanup; }
|
|
|
|
i = outbytes;
|
|
|
|
if ((err = hash_memory(hash, sbuf, seedbytes, digest, &i)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_read_unsigned_bin(U, digest, outbytes)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_mod(U, t2N1, U)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_add(t2N1, U, q)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if (!mp_isodd(q)) mp_add_d(q, 1, q);
|
2017-06-14 16:57:27 +02:00
|
|
|
if ((err = mp_prime_is_prime(q, mr_tests_q, &res)) != CRYPT_OK) { goto cleanup; }
|
2014-01-27 21:10:41 +01:00
|
|
|
if (res == LTC_MP_YES) found_q = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* p */
|
|
|
|
if ((err = mp_read_unsigned_bin(seedinc, sbuf, seedbytes)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_add(q, q, t2q)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
for(counter=0; counter < 4*L && !found_p; counter++) {
|
|
|
|
for(j=0; j<=n; j++) {
|
|
|
|
if ((err = mp_add_d(seedinc, 1, seedinc)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_mod(seedinc, t2seedlen, seedinc)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* seedinc = (seedinc+1) % 2^seed_bitlen */
|
|
|
|
if ((i = mp_unsigned_bin_size(seedinc)) > seedbytes) { err = CRYPT_INVALID_ARG; goto cleanup; }
|
|
|
|
zeromem(sbuf, seedbytes);
|
|
|
|
if ((err = mp_to_unsigned_bin(seedinc, sbuf + seedbytes-i)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
i = outbytes;
|
|
|
|
err = hash_memory(hash, sbuf, seedbytes, wbuf+(n-j)*outbytes, &i);
|
|
|
|
if (err != CRYPT_OK) { goto cleanup; }
|
|
|
|
}
|
|
|
|
if ((err = mp_read_unsigned_bin(W, wbuf, (n+1)*outbytes)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_mod(W, t2L1, W)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_add(W, t2L1, X)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_mod(X, t2q, c)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_sub_d(c, 1, p)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_sub(X, p, p)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if (mp_cmp(p, t2L1) != LTC_MP_LT) {
|
|
|
|
/* p >= 2^(L-1) */
|
2017-06-14 16:57:27 +02:00
|
|
|
if ((err = mp_prime_is_prime(p, mr_tests_p, &res)) != CRYPT_OK) { goto cleanup; }
|
2014-01-27 21:10:41 +01:00
|
|
|
if (res == LTC_MP_YES) {
|
|
|
|
found_p = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* FIPS-186-4 A.2.1 Unverifiable Generation of the Generator g
|
|
|
|
* 1. e = (p - 1)/q
|
|
|
|
* 2. h = any integer satisfying: 1 < h < (p - 1)
|
|
|
|
* h could be obtained from a random number generator or from a counter that changes after each use
|
|
|
|
* 3. g = h^e mod p
|
|
|
|
* 4. if (g == 1), then go to step 2.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
if ((err = mp_sub_d(p, 1, e)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_div(e, q, e, c)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* e = (p - 1)/q */
|
|
|
|
i = mp_count_bits(p);
|
|
|
|
do {
|
|
|
|
do {
|
|
|
|
if ((err = rand_bn_bits(h, i, prng, wprng)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
} while (mp_cmp(h, p) != LTC_MP_LT || mp_cmp_d(h, 2) != LTC_MP_GT);
|
|
|
|
if ((err = mp_sub_d(h, 1, h)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* h is randon and 1 < h < (p-1) */
|
|
|
|
if ((err = mp_exptmod(h, e, p, g)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
} while (mp_cmp_d(g, 1) == LTC_MP_EQ);
|
|
|
|
|
|
|
|
err = CRYPT_OK;
|
|
|
|
cleanup:
|
|
|
|
mp_clear_multi(t2L1, t2N1, t2q, t2seedlen, U, W, X, c, h, e, seedinc, NULL);
|
|
|
|
cleanup1:
|
2014-05-09 22:55:49 +02:00
|
|
|
XFREE(sbuf);
|
2014-01-27 21:10:41 +01:00
|
|
|
cleanup2:
|
|
|
|
XFREE(wbuf);
|
|
|
|
cleanup3:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Create a DSA key (with given params)
|
2004-12-30 23:55:53 +00:00
|
|
|
@param prng An active PRNG state
|
|
|
|
@param wprng The index of the PRNG desired
|
|
|
|
@param group_size Size of the multiplicative group (octets)
|
|
|
|
@param modulus_size Size of the modulus (octets)
|
|
|
|
@param key [out] Where to store the created key
|
2014-01-27 21:10:41 +01:00
|
|
|
@param p_hex Hexadecimal string 'p'
|
|
|
|
@param q_hex Hexadecimal string 'q'
|
|
|
|
@param g_hex Hexadecimal string 'g'
|
2004-12-30 23:55:53 +00:00
|
|
|
@return CRYPT_OK if successful, upon error this function will free all allocated memory
|
|
|
|
*/
|
2014-01-27 21:10:41 +01:00
|
|
|
int dsa_make_key_ex(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key, char* p_hex, char* q_hex, char* g_hex)
|
2004-05-12 20:42:16 +00:00
|
|
|
{
|
2014-01-27 21:10:41 +01:00
|
|
|
int err, qbits;
|
|
|
|
|
|
|
|
LTC_ARGCHK(key != NULL);
|
2004-05-12 20:42:16 +00:00
|
|
|
|
2014-01-27 21:10:41 +01:00
|
|
|
/* init mp_ints */
|
|
|
|
if ((err = mp_init_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) {
|
2004-06-20 02:41:49 +00:00
|
|
|
return err;
|
2014-01-27 21:10:41 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
if (p_hex == NULL || q_hex == NULL || g_hex == NULL) {
|
|
|
|
/* generate params */
|
|
|
|
err = dsa_make_params(prng, wprng, group_size, modulus_size, key->p, key->q, key->g);
|
|
|
|
if (err != CRYPT_OK) { goto cleanup; }
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* read params */
|
|
|
|
if ((err = mp_read_radix(key->p, p_hex, 16)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_read_radix(key->q, q_hex, 16)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
if ((err = mp_read_radix(key->g, g_hex, 16)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* XXX-TODO maybe do some validity check for p, q, g */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* so now we have our DH structure, generator g, order q, modulus p
|
|
|
|
Now we need a random exponent [mod q] and it's power g^x mod p
|
|
|
|
*/
|
|
|
|
qbits = mp_count_bits(key->q);
|
|
|
|
do {
|
|
|
|
if ((err = rand_bn_bits(key->x, qbits, prng, wprng)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
/* private key x should be from range: 1 <= x <= q-1 (see FIPS 186-4 B.1.2) */
|
|
|
|
} while (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT);
|
|
|
|
if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK) { goto cleanup; }
|
|
|
|
key->type = PK_PRIVATE;
|
|
|
|
key->qord = group_size;
|
|
|
|
|
|
|
|
return CRYPT_OK;
|
|
|
|
|
|
|
|
cleanup:
|
|
|
|
mp_clear_multi(key->g, key->q, key->p, key->x, key->y, NULL);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Create a DSA key
|
|
|
|
@param prng An active PRNG state
|
|
|
|
@param wprng The index of the PRNG desired
|
|
|
|
@param group_size Size of the multiplicative group (octets)
|
|
|
|
@param modulus_size Size of the modulus (octets)
|
|
|
|
@param key [out] Where to store the created key
|
|
|
|
@return CRYPT_OK if successful, upon error this function will free all allocated memory
|
|
|
|
*/
|
|
|
|
int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
|
|
|
|
{
|
|
|
|
return dsa_make_key_ex(prng, wprng, group_size, modulus_size, key, NULL, NULL, NULL);
|
2004-05-12 20:42:16 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
2005-06-09 00:08:13 +00:00
|
|
|
|
2017-06-19 13:43:49 +02:00
|
|
|
/* ref: $Format:%D$ */
|
|
|
|
/* git commit: $Format:%H$ */
|
|
|
|
/* commit time: $Format:%ai$ */
|