update demo_dynamic.py

This commit is contained in:
Larry Bugbee 2017-08-09 11:13:13 +02:00 committed by Steffen Jaeckel
parent 91e5e8350b
commit 9f548c9928

132
demos/demo_dynamic.py Executable file → Normal file
View File

@ -1,7 +1,7 @@
"""
demo_dynamic.py v1
demo_dynamic.py v2
This program demonstrates Python's use of the dynamic
language support additions to LTC, namely access to LTC
@ -19,26 +19,21 @@
load multiple .dylibs, but it does not support this level
of tight coupling between otherwise independent libraries.)
My .dylib was created on OSX with the following steps:
1- compile LTC to a .a static lib:
CFLAGS="-DLTM_DESC -DUSE_LTM" make
2- link LTC and LTM into a single .dylib:
ar2dylib_with tomcrypt tommath
where ar2dylib_with is a shell script that combines
the LTC .a with the LTM .dylib
My .dylib was created on OSX/macOS with the following:
sudo make -j5 -f makefile.shared \
CFLAGS="-DUSE_TFM -DTFM_DESC -I/usr/local/include" \
EXTRALIBS=/usr/local/lib/libtfm.a install
Reminder: you don't need to bind in a math library unless
you are going to use LTC functions that depend
on a mathlib. For example, public key crypto
needs a mathlib; hashing and symmetric encryption
do not.
you are going to use LTC functions that need a
mathlib. For example, public key crypto requires
a mathlib; hashing and symmetric encryption do not.
This code was written for Python 2.7.
Larry Bugbee
March 2014
March 2014 v1
August 2017 v2
"""
@ -46,15 +41,23 @@
from ctypes import *
from ctypes.util import find_library
# switches to enable/disable selected output
SHOW_ALL_CONSTANTS = True
SHOW_ALL_SIZES = True
SHOW_SELECTED_CONSTANTS = True
SHOW_SELECTED_SIZES = True
SHOW_BUILD_OPTIONS_ALGS = True
SHOW_SHA256_EXAMPLE = True
SHOW_CHACHA_EXAMPLE = True
print
print(' demo_dynamic.py')
#---------------------------------------------------------------
# load the .dylib
libname = 'tomcrypt'
libpath = find_library(libname)
print
print(' demo_dynamic.py')
print
print(' path to library %s: %s' % (libname, libpath))
@ -69,7 +72,8 @@ print
# supported sizes. One alternative: these lists may be parsed
# and used as needed.
if 1:
if SHOW_ALL_CONSTANTS:
print '-'*60
print ' all supported constants and their values:'
# get size to allocate for constants output list
@ -85,7 +89,8 @@ if 1:
print
if 1:
if SHOW_ALL_SIZES:
print '-'*60
print ' all supported sizes:'
# get size to allocate for sizes output list
@ -105,7 +110,8 @@ if 1:
# get individually named constants and sizes
# print selected constants
if 1:
if SHOW_SELECTED_CONSTANTS:
print '-'*60
print '\n selected constants:'
names = [
@ -122,7 +128,8 @@ if 1:
print ' %-25s %d' % (name, value)
# print selected sizes
if 1:
if SHOW_SELECTED_SIZES:
print '-'*60
print '\n selected sizes:'
names = [
@ -143,14 +150,18 @@ if 1:
#---------------------------------------------------------------
#---------------------------------------------------------------
# ctypes getting a list of this build's supported algorithms
# and compiler switches
# LibTomCrypt exposes one interesting string that can be accessed
# via Python's ctypes module, "crypt_build_settings", which
# provides a list of this build's compiler switches and supported
# algorithms. If someday LTC exposes other interesting strings,
# they can be found with:
# nm /usr/local/lib/libtomcrypt.dylib | grep " D "
def get_named_string(lib, name):
return c_char_p.in_dll(lib, name).value
if 0:
print '\n%s' % ('-'*60)
if SHOW_BUILD_OPTIONS_ALGS:
print '-'*60
print 'This is a string compiled into LTC showing compile '
print 'options and algorithms supported by this build \n'
print get_named_string(LTC, 'crypt_build_settings')
@ -160,23 +171,31 @@ if 0:
#---------------------------------------------------------------
#---------------------------------------------------------------
# here is an example of how a wrapper can make Python access
# more Pythonic
# here is an example of how Python code can be written to access
# LTC's implementation of SHA256 and ChaCha,
# - - - - - - - - - - - - -
# a wrapper fragment...
# definitions
def _get_size(name):
size = c_int(0)
rc = LTC.crypt_get_size(name, byref(size))
if rc != 0:
raise Exception('LTC.crypt_get_size(%s) rc = %d' % (name, rc))
return size.value
sha256_state_struct_size = _get_size('sha256_state')
sha512_state_struct_size = _get_size('sha512_state')
def _get_constant(name):
constant = c_int(0)
rc = LTC.crypt_get_constant(name, byref(constant))
if rc != 0:
raise Exception('LTC.crypt_get_constant(%s) rc = %d' % (name, rc))
return constant.value
CRYPT_OK = _get_constant('CRYPT_OK')
class SHA256(object):
def __init__(self):
self.state = c_buffer(sha256_state_struct_size)
self.state = c_buffer(_get_size('sha256_state'))
LTC.sha256_init(byref(self.state))
def update(self, data):
LTC.sha256_process(byref(self.state), data, len(data))
@ -185,19 +204,54 @@ class SHA256(object):
LTC.sha256_done(byref(self.state), byref(md))
return md.raw
class ChaCha(object):
def __init__(self, key, rounds):
self.state = c_buffer(_get_size('chacha_state'))
self.counter = c_int(1)
err = LTC.chacha_setup(byref(self.state), key, len(key), rounds)
def set_iv32(self, iv):
err = LTC.chacha_ivctr32(byref(self.state), iv, len(iv), byref(self.counter))
if err != CRYPT_OK:
raise Exception('LTC.chacha_ivctr32() err = %d' % err)
def crypt(self, datain):
dataout = c_buffer(len(datain))
err = LTC.chacha_crypt(byref(self.state), datain, len(datain), byref(dataout))
if err != CRYPT_OK:
raise Exception('LTC.chacha_crypt() err = %d' % err)
return dataout.raw
# - - - - - - - - - - - - -
# an app fragment...
# a SHA256 app fragment...
# from wrapper import * # uncomment in real life
data = 'hello world'
if SHOW_SHA256_EXAMPLE:
print '-'*60
data = 'hello world'
sha256 = SHA256()
sha256.update(data)
md = sha256.digest()
sha256 = SHA256()
sha256.update(data)
md = sha256.digest()
template = '\n\n the SHA256 digest for "%s" is %s \n'
print template % (data, md.encode('hex'))
template = '\n the SHA256 digest for "%s" is %s \n'
print template % (data, md.encode('hex'))
# - - - - - - - - - - - - -
# a ChaCha app fragment...
if SHOW_CHACHA_EXAMPLE:
print '-'*60
key = 'hownowbrowncow\x00\x00' # exactly 16 or 32 bytes
rounds = 12 # common values: 8, 12, 20
iv = '123456789012' # exactly 12 bytes
plain = 'Kilroy was here, there, and everywhere!'
cha = ChaCha(key, rounds)
cha.set_iv32(iv)
cipher = cha.crypt(plain)
template = '\n ChaCha%d ciphertext for "%s" is "%s" \n'
print template % (rounds, plain, cipher.encode('hex'))