added a Python demo

This commit is contained in:
Larry Bugbee 2014-03-06 21:25:31 -08:00 committed by Steffen Jaeckel
parent 1b29ce896f
commit d99b970a8b

237
demos/demo_dynamic.py Normal file
View File

@ -0,0 +1,237 @@
"""
demo_dynamic.py v1
This program demonstrates Python's use of the dynamic
language support additions to LTC, namely access to LTC
constants, struct and union sizes, and the binding of a
math package to LTC. Also provided are simple code
fragments to illustrate how one might write a Python
wrapper for LTC and how an app might call the wrapper.
This or a similar model should work for Ruby and other
dynamic languages.
This instance uses Python's ctypes and requires a single
.dylib linking together LTC and one or more math libraries.
Building a single .dylib is needed because LTC wants a
fairly tight relationship between itself and the mathlib.
(ctypes can load multiple .dylibs, but it does not support
this level of coupling between those independent libraries.)
My .dylib was created on OSX with the following steps:
1- compile LTC to a .a static lib:
CFLAGS="-DLTM_DESC -DUSE_LTM -DTFM_DESC -DUSE_TFM \
-I/usr/local/include" make
2- link LTC, LTM and TFM into a single .dylib:
ar2dylib_with_and tomcrypt tommath tfm
where ar2dylib_with_and is a shell script that combines
the .a with .dylibs for LTM and TFM
Reminder: you don't need to bind in a math library unless
you are going to use LTC functions that depend
on a mathlib. For example, public key crypto
needs a mathlib; hashing and symmetric encryption
does not.
Larry Bugbee
March 2014
"""
from ctypes import *
from ctypes.util import find_library
#---------------------------------------------------------------
# load the .dylib
libname = 'tomcrypt'
libpath = find_library(libname)
print
print(' demo_dynamic.py')
print
print(' path to library %s: %s' % (libname, libpath))
LTC = cdll.LoadLibrary(libpath)
print(' loaded: %s' % LTC)
print
#---------------------------------------------------------------
# get list of all supported constants followed by a list of all
# supported sizes. One alternative: these lists may be parsed
# and used as needed.
if 1:
print ' all supported constants and their values:'
# get size to allocate for constants output list
str_len = c_int(0)
ret = LTC.crypt_list_all_constants(None, byref(str_len))
print ' need to allocate %d bytes \n' % str_len.value
# allocate that size and get (name, size) pairs, each pair
# separated by a newline char.
names_sizes = c_buffer(str_len.value)
ret = LTC.crypt_list_all_constants(names_sizes, byref(str_len))
print names_sizes.value
print
if 1:
print ' all supported sizes:'
# get size to allocate for sizes output list
str_len = c_int(0)
ret = LTC.crypt_list_all_sizes(None, byref(str_len))
print ' need to allocate %d bytes \n' % str_len.value
# allocate that size and get (name, size) pairs, each pair
# separated by a newline char.
names_sizes = c_buffer(str_len.value)
ret = LTC.crypt_list_all_sizes(names_sizes, byref(str_len))
print names_sizes.value
print
#---------------------------------------------------------------
# get individually named constants and sizes
# print selected constants
if 1:
print '\n selected constants:'
names = [
'PK_PUBLIC',
'MAX_RSA_SIZE',
'CTR_COUNTER_BIG_ENDIAN',
]
for name in names:
const_value = c_int(0)
rc = LTC.crypt_get_constant(name, byref(const_value))
value = const_value.value
print ' %-25s %d' % (name, value)
# print selected sizes
if 1:
print '\n selected sizes:'
names = [
'rijndael_key_struct_size',
'rsa_key_struct_size',
'symmetric_CTR_struct_size',
'twofish_key_struct_size',
'ecc_point_struct_size',
'gcm_state_struct_size',
'sha512_state_struct_size',
]
for name in names:
size_value = c_int(0)
rc = LTC.crypt_get_size(name, byref(size_value))
value = size_value.value
print ' %-25s %d' % (name, value)
#---------------------------------------------------------------
# init the selected math package, change to another mathlib,
# and change back to the first mathlib
if 1:
print '\n init the selected math package, change, and change again'
# show ltm_desc
ptr = c_int.in_dll(LTC, 'ltm_desc')
print ' ltm_desc: ', hex(ptr.value)
# show tfm_desc
ptr = c_int.in_dll(LTC, 'tfm_desc')
print ' tfm_desc: ', hex(ptr.value)
# let's see the initial value of ltc_mp
ptr = c_int.in_dll(LTC, 'ltc_mp')
print ' initial ptr:', hex(ptr.value)
# init LTM and show ltc_mp
LTC.init_LTM()
ptr = c_int.in_dll(LTC, 'ltc_mp')
print ' ptr to LTM: ', hex(ptr.value)
# init TFM and show ltc_mp
LTC.init_TFM()
ptr = c_int.in_dll(LTC, 'ltc_mp')
print ' ptr to TFM: ', hex(ptr.value)
# now change back to LTM
LTC.init_LTM()
ptr = c_int.in_dll(LTC, 'ltc_mp')
print ' ptr to LTM: ', hex(ptr.value)
#---------------------------------------------------------------
#---------------------------------------------------------------
# ctypes getting a list of this build's supported algorithms
# and compiler switches
def get_named_string(lib, name):
return c_char_p.in_dll(lib, name).value
if 0:
print '\n%s' % ('-'*60)
print 'This is a string compiled into LTC showing compile '
print 'options and algorithms supported by this build \n'
print get_named_string(LTC, 'crypt_build_settings')
print
#---------------------------------------------------------------
#---------------------------------------------------------------
# here is an example of how a wrapper can make Python access
# more Pythonic
# - - - - - - - - - - - - -
# a wrapper fragment...
def _get_size(name):
size = c_int(0)
rc = LTC.crypt_get_size(name, byref(size))
return size.value
sha256_state_struct_size = _get_size('sha256_state_struct_size')
sha512_state_struct_size = _get_size('sha512_state_struct_size')
class SHA256(object):
def __init__(self):
self.state = c_buffer(sha256_state_struct_size)
LTC.sha256_init(byref(self.state))
def update(self, data):
LTC.sha256_process(byref(self.state), data, len(data))
def digest(self):
md = c_buffer(32)
LTC.sha256_done(byref(self.state), byref(md))
return md.raw
# - - - - - - - - - - - - -
# an app fragment...
# from wrapper import * # uncomment in real life
data = 'hello world'
sha256 = SHA256()
sha256.update(data)
md = sha256.digest()
template = '\n\n the SHA256 digest for "%s" is %s \n'
print template % (data, md.encode('hex'))
#---------------------------------------------------------------
#---------------------------------------------------------------
#---------------------------------------------------------------