fix crypt.tex with newer LaTeX: s/here/h/g

See https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=790321 for context
This commit is contained in:
Michael Stapelberg 2015-06-28 20:35:13 +02:00 committed by Steffen Jaeckel
parent 84606ab8de
commit deeea5a1ec

View File

@ -2162,7 +2162,7 @@ int unregister_hash(const struct _hash_descriptor *hash);
The following hashes are provided as of this release within the LibTomCrypt library:
\index{Hash descriptor table}
\begin{figure}[here]
\begin{figure}[h]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Name} & \textbf{Descriptor Name} & \textbf{Size of Message Digest (bytes)} \\
@ -3028,7 +3028,7 @@ descriptor twice, and will return the index of the current placement in the tabl
will return \textbf{CRYPT\_OK} if the PRNG was found and removed. Otherwise, it returns \textbf{CRYPT\_ERROR}.
\subsection{PRNGs Provided}
\begin{figure}[here]
\begin{figure}[h]
\begin{center}
\begin{small}
\begin{tabular}{|c|c|l|}
@ -4450,7 +4450,7 @@ The variable \textit{prng} is an active PRNG state and \textit{wprng} the index
\textit{group\_size} the more difficult a forgery becomes upto a limit. The value of $group\_size$ is limited by
$15 < group\_size < 1024$ and $modulus\_size - group\_size < 512$. Suggested values for the pairs are as follows.
\begin{figure}[here]
\begin{figure}[h]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Bits of Security} & \textbf{group\_size} & \textbf{modulus\_size} \\
@ -4666,7 +4666,7 @@ LTC_SET_ASN1(sequence, x++, LTC_ASN1_NULL, NULL, 0);
\end{verbatim}
\end{small}
\begin{figure}[here]
\begin{figure}[h]
\begin{center}
\begin{small}
\begin{tabular}{|l|l|}
@ -5689,7 +5689,7 @@ e^{1.923 \cdot ln(n)^{1 \over 3} \cdot ln(ln(n))^{2 \over 3}}
Note that $n$ is not the bit-length but the magnitude. For example, for a 1024-bit key $n = 2^{1024}$. The work required
is:
\begin{figure}[here]
\begin{figure}[h]
\begin{center}
\begin{tabular}{|c|c|}
\hline RSA/DH Key Size (bits) & Work Factor ($log_2$) \\
@ -5709,7 +5709,7 @@ is:
The work factor for ECC keys is much higher since the best attack is still fully exponential. Given a key of magnitude
$n$ it requires $\sqrt n$ work. The following table summarizes the work required:
\begin{figure}[here]
\begin{figure}[h]
\begin{center}
\begin{tabular}{|c|c|}
\hline ECC Key Size (bits) & Work Factor ($log_2$) \\