also test XTS accelerators

This commit is contained in:
Steffen Jaeckel 2015-08-26 00:05:07 +02:00
parent 181d2f2df7
commit f9c8c9c229

View File

@ -12,6 +12,54 @@
#ifdef LTC_XTS_MODE
static int _xts_test_accel_xts_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long blocks,
unsigned char *tweak, symmetric_key *skey1, symmetric_key *skey2)
{
int ret;
symmetric_xts xts;
/* AES can be under rijndael or aes... try to find it */
if ((xts.cipher = find_cipher("aes")) == -1) {
if ((xts.cipher = find_cipher("rijndael")) == -1) {
return CRYPT_NOP;
}
}
void *orig = cipher_descriptor[xts.cipher].accel_xts_encrypt;
cipher_descriptor[xts.cipher].accel_xts_encrypt = NULL;
XMEMCPY(&xts.key1, skey1, sizeof(symmetric_key));
XMEMCPY(&xts.key2, skey2, sizeof(symmetric_key));
ret = xts_encrypt(pt, blocks << 4, ct, tweak, &xts);
cipher_descriptor[xts.cipher].accel_xts_encrypt = orig;
return ret;
}
static int _xts_test_accel_xts_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long blocks,
unsigned char *tweak, symmetric_key *skey1, symmetric_key *skey2)
{
int ret;
symmetric_xts xts;
/* AES can be under rijndael or aes... try to find it */
if ((xts.cipher = find_cipher("aes")) == -1) {
if ((xts.cipher = find_cipher("rijndael")) == -1) {
return CRYPT_NOP;
}
}
void *orig = cipher_descriptor[xts.cipher].accel_xts_decrypt;
cipher_descriptor[xts.cipher].accel_xts_decrypt = NULL;
XMEMCPY(&xts.key1, skey1, sizeof(symmetric_key));
XMEMCPY(&xts.key2, skey2, sizeof(symmetric_key));
ret = xts_decrypt(ct, blocks << 4, pt, tweak, &xts);
cipher_descriptor[xts.cipher].accel_xts_decrypt = orig;
return ret;
}
/**
Source donated by Elliptic Semiconductor Inc (www.ellipticsemi.com) to the LibTom Projects
@ -147,7 +195,7 @@ int xts_test(void)
unsigned char OUT[512], Torg[16], T[16];
ulong64 seq;
symmetric_xts xts;
int i, j, err, idx;
int i, j, k, err, idx;
unsigned long len;
/* AES can be under rijndael or aes... try to find it */
@ -156,89 +204,102 @@ int xts_test(void)
return CRYPT_NOP;
}
}
for (j = 0; j < 2; j++) {
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
/* skip the cases where
* the length is smaller than 2*blocklen
* or the length is not a multiple of 32
*/
if ((j == 1) && ((tests[i].PTLEN < 32) || (tests[i].PTLEN % 32))) {
continue;
}
len = tests[i].PTLEN / 2;
for (k = 0; k < 4; ++k) {
cipher_descriptor[idx].accel_xts_encrypt = NULL;
cipher_descriptor[idx].accel_xts_decrypt = NULL;
if (k & 0x1) {
cipher_descriptor[idx].accel_xts_encrypt = _xts_test_accel_xts_encrypt;
}
if (k & 0x2) {
cipher_descriptor[idx].accel_xts_decrypt = _xts_test_accel_xts_decrypt;
}
for (j = 0; j < 2; j++) {
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
/* skip the cases where
* the length is smaller than 2*blocklen
* or the length is not a multiple of 32
*/
if ((j == 1) && ((tests[i].PTLEN < 32) || (tests[i].PTLEN % 32))) {
continue;
}
if ((k > 0) && (j == 1)) {
continue;
}
len = tests[i].PTLEN / 2;
err = xts_start(idx, tests[i].key1, tests[i].key2, tests[i].keylen / 2, 0, &xts);
if (err != CRYPT_OK) {
return err;
}
seq = tests[i].seqnum;
STORE64L(seq, Torg);
XMEMSET(Torg + 8, 0, 8);
XMEMCPY(T, Torg, sizeof(T));
if (j == 0) {
err = xts_encrypt(tests[i].PTX, tests[i].PTLEN, OUT, T, &xts);
err = xts_start(idx, tests[i].key1, tests[i].key2, tests[i].keylen / 2, 0, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
} else {
err = xts_encrypt(tests[i].PTX, len, OUT, T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
err = xts_encrypt(&tests[i].PTX[len], len, &OUT[len], T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
}
if (XMEMCMP(OUT, tests[i].CTX, tests[i].PTLEN)) {
seq = tests[i].seqnum;
STORE64L(seq, Torg);
XMEMSET(Torg + 8, 0, 8);
XMEMCPY(T, Torg, sizeof(T));
if (j == 0) {
err = xts_encrypt(tests[i].PTX, tests[i].PTLEN, OUT, T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
} else {
err = xts_encrypt(tests[i].PTX, len, OUT, T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
err = xts_encrypt(&tests[i].PTX[len], len, &OUT[len], T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
}
if (XMEMCMP(OUT, tests[i].CTX, tests[i].PTLEN)) {
#ifdef LTC_TEST_DBG
printf("\nTestcase #%d with original length %lu and half of it "
"%lu\n",
i, tests[i].PTLEN, len);
printf("\nencrypt\n");
print_hex("should", tests[i].CTX, tests[i].PTLEN);
print_hex("is", OUT, tests[i].PTLEN);
printf("\nTestcase #%d with original length %lu and half of it "
"%lu\n",
i, tests[i].PTLEN, len);
printf("\nencrypt\n");
print_hex("should", tests[i].CTX, tests[i].PTLEN);
print_hex("is", OUT, tests[i].PTLEN);
#endif
xts_done(&xts);
return CRYPT_FAIL_TESTVECTOR;
}
xts_done(&xts);
return CRYPT_FAIL_TESTVECTOR;
}
XMEMCPY(T, Torg, sizeof(T));
if (j == 0) {
err = xts_decrypt(tests[i].CTX, tests[i].PTLEN, OUT, T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
XMEMCPY(T, Torg, sizeof(T));
if (j == 0) {
err = xts_decrypt(tests[i].CTX, tests[i].PTLEN, OUT, T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
} else {
err = xts_decrypt(tests[i].CTX, len, OUT, T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
err = xts_decrypt(&tests[i].CTX[len], len, &OUT[len], T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
}
} else {
err = xts_decrypt(tests[i].CTX, len, OUT, T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
err = xts_decrypt(&tests[i].CTX[len], len, &OUT[len], T, &xts);
if (err != CRYPT_OK) {
xts_done(&xts);
return err;
}
}
if (XMEMCMP(OUT, tests[i].PTX, tests[i].PTLEN)) {
if (XMEMCMP(OUT, tests[i].PTX, tests[i].PTLEN)) {
#ifdef LTC_TEST_DBG
printf("\ndecrypt\n");
print_hex("should", tests[i].PTX, tests[i].PTLEN);
print_hex("is", OUT, tests[i].PTLEN);
printf("\ndecrypt\n");
print_hex("should", tests[i].PTX, tests[i].PTLEN);
print_hex("is", OUT, tests[i].PTLEN);
#endif
xts_done(&xts);
return CRYPT_FAIL_TESTVECTOR;
}
xts_done(&xts);
return CRYPT_FAIL_TESTVECTOR;
}
xts_done(&xts);
}
}
return CRYPT_OK;