290 lines
7.6 KiB
C
290 lines
7.6 KiB
C
#include <mycrypt.h>
|
|
|
|
void reg_algs(void)
|
|
{
|
|
#ifdef RIJNDAEL
|
|
register_cipher (&aes_desc);
|
|
#endif
|
|
#ifdef BLOWFISH
|
|
register_cipher (&blowfish_desc);
|
|
#endif
|
|
#ifdef XTEA
|
|
register_cipher (&xtea_desc);
|
|
#endif
|
|
#ifdef RC5
|
|
register_cipher (&rc5_desc);
|
|
#endif
|
|
#ifdef RC6
|
|
register_cipher (&rc6_desc);
|
|
#endif
|
|
#ifdef SAFERP
|
|
register_cipher (&saferp_desc);
|
|
#endif
|
|
#ifdef TWOFISH
|
|
register_cipher (&twofish_desc);
|
|
#endif
|
|
#ifdef SAFER
|
|
register_cipher (&safer_k64_desc);
|
|
register_cipher (&safer_sk64_desc);
|
|
register_cipher (&safer_k128_desc);
|
|
register_cipher (&safer_sk128_desc);
|
|
#endif
|
|
#ifdef RC2
|
|
register_cipher (&rc2_desc);
|
|
#endif
|
|
#ifdef DES
|
|
register_cipher (&des_desc);
|
|
register_cipher (&des3_desc);
|
|
#endif
|
|
#ifdef CAST5
|
|
register_cipher (&cast5_desc);
|
|
#endif
|
|
#ifdef NOEKEON
|
|
register_cipher (&noekeon_desc);
|
|
#endif
|
|
#ifdef SKIPJACK
|
|
register_cipher (&skipjack_desc);
|
|
#endif
|
|
|
|
#ifdef TIGER
|
|
register_hash (&tiger_desc);
|
|
#endif
|
|
#ifdef MD2
|
|
register_hash (&md2_desc);
|
|
#endif
|
|
#ifdef MD4
|
|
register_hash (&md4_desc);
|
|
#endif
|
|
#ifdef MD5
|
|
register_hash (&md5_desc);
|
|
#endif
|
|
#ifdef SHA1
|
|
register_hash (&sha1_desc);
|
|
#endif
|
|
#ifdef SHA224
|
|
register_hash (&sha224_desc);
|
|
#endif
|
|
#ifdef SHA256
|
|
register_hash (&sha256_desc);
|
|
#endif
|
|
#ifdef SHA384
|
|
register_hash (&sha384_desc);
|
|
#endif
|
|
#ifdef SHA512
|
|
register_hash (&sha512_desc);
|
|
#endif
|
|
#ifdef RIPEMD128
|
|
register_hash (&rmd128_desc);
|
|
#endif
|
|
#ifdef RIPEMD160
|
|
register_hash (&rmd160_desc);
|
|
#endif
|
|
}
|
|
|
|
void hash_gen(void)
|
|
{
|
|
unsigned char md[MAXBLOCKSIZE], buf[MAXBLOCKSIZE*2+2];
|
|
unsigned long outlen, x, y, z;
|
|
FILE *out;
|
|
|
|
out = fopen("hash_tv.txt", "w");
|
|
|
|
fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n");
|
|
for (x = 0; hash_descriptor[x].name != NULL; x++) {
|
|
fprintf(out, "Hash: %s\n", hash_descriptor[x].name);
|
|
|
|
for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) {
|
|
for (z = 0; z < y; z++) {
|
|
buf[z] = (unsigned char)(z & 255);
|
|
}
|
|
outlen = sizeof(md);
|
|
hash_memory(x, buf, y, md, &outlen);
|
|
fprintf(out, "%3lu: ", y);
|
|
for (z = 0; z < outlen; z++) {
|
|
fprintf(out, "%02X", md[z]);
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
fclose(out);
|
|
}
|
|
|
|
void cipher_gen(void)
|
|
{
|
|
unsigned char key[MAXBLOCKSIZE], pt[MAXBLOCKSIZE];
|
|
unsigned long x, y, z, w;
|
|
int kl, lastkl;
|
|
FILE *out;
|
|
symmetric_key skey;
|
|
|
|
out = fopen("cipher_tv.txt", "w");
|
|
|
|
fprintf(out,
|
|
"Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n"
|
|
"The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n");
|
|
|
|
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
|
fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name);
|
|
|
|
/* three modes, smallest, medium, large keys */
|
|
lastkl = 10000;
|
|
for (y = 0; y < 3; y++) {
|
|
switch (y) {
|
|
case 0: kl = cipher_descriptor[x].min_key_length; break;
|
|
case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break;
|
|
case 2: kl = cipher_descriptor[x].max_key_length; break;
|
|
}
|
|
cipher_descriptor[x].keysize(&kl);
|
|
if (kl == lastkl) break;
|
|
lastkl = kl;
|
|
fprintf(out, "Key Size: %d bytes\n", kl);
|
|
|
|
for (z = 0; (int)z < kl; z++) {
|
|
key[z] = (unsigned char)z;
|
|
}
|
|
cipher_descriptor[x].setup(key, kl, 0, &skey);
|
|
|
|
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
|
|
pt[z] = (unsigned char)z;
|
|
}
|
|
for (w = 0; w < 50; w++) {
|
|
cipher_descriptor[x].ecb_encrypt(pt, pt, &skey);
|
|
fprintf(out, "%2lu: ", w);
|
|
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
|
|
fprintf(out, "%02X", pt[z]);
|
|
}
|
|
fprintf(out, "\n");
|
|
|
|
/* reschedule a new key */
|
|
for (z = 0; z < (unsigned long)kl; z++) {
|
|
key[z] = pt[z % cipher_descriptor[x].block_length];
|
|
}
|
|
cipher_descriptor[x].setup(key, kl, 0, &skey);
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
fclose(out);
|
|
}
|
|
|
|
void hmac_gen(void)
|
|
{
|
|
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
|
|
int x, y, z, kl, err;
|
|
FILE *out;
|
|
unsigned long len;
|
|
|
|
out = fopen("hmac_tv.txt", "w");
|
|
|
|
fprintf(out,
|
|
"HMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed. The initial key is\n"
|
|
"of the same format (the same length as the HASH output size). The HMAC key in step N+1 is the HMAC output of\n"
|
|
"step N.\n\n");
|
|
|
|
for (x = 0; hash_descriptor[x].name != NULL; x++) {
|
|
fprintf(out, "HMAC-%s\n", hash_descriptor[x].name);
|
|
|
|
/* initial key */
|
|
for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) {
|
|
key[y] = (y&255);
|
|
}
|
|
|
|
for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) {
|
|
for (z = 0; z < y; z++) {
|
|
input[z] = (unsigned char)(z & 255);
|
|
}
|
|
len = sizeof(output);
|
|
if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) {
|
|
printf("Error hmacing: %s\n", error_to_string(err));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
fprintf(out, "%3d: ", y);
|
|
for (z = 0; z <(int) len; z++) {
|
|
fprintf(out, "%02X", output[z]);
|
|
}
|
|
fprintf(out, "\n");
|
|
|
|
/* forward the key */
|
|
memcpy(key, output, hash_descriptor[x].hashsize);
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
fclose(out);
|
|
}
|
|
|
|
void omac_gen(void)
|
|
{
|
|
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
|
|
int err, x, y, z, kl;
|
|
FILE *out;
|
|
unsigned long len;
|
|
|
|
out = fopen("omac_tv.txt", "w");
|
|
|
|
fprintf(out,
|
|
"OMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed. The initial key is\n"
|
|
"of the same format (length specified per cipher). The OMAC key in step N+1 is the OMAC output of\n"
|
|
"step N (repeated as required to fill the array).\n\n");
|
|
|
|
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
|
kl = cipher_descriptor[x].block_length;
|
|
|
|
/* skip ciphers which do not have 64 or 128 bit block sizes */
|
|
if (kl != 8 && kl != 16) continue;
|
|
|
|
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
|
kl = cipher_descriptor[x].max_key_length;
|
|
}
|
|
fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
|
|
|
/* initial key/block */
|
|
for (y = 0; y < kl; y++) {
|
|
key[y] = (y & 255);
|
|
}
|
|
|
|
for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
|
|
for (z = 0; z < y; z++) {
|
|
input[z] = (unsigned char)(z & 255);
|
|
}
|
|
len = sizeof(output);
|
|
if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
|
|
printf("Error omacing: %s\n", error_to_string(err));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
fprintf(out, "%3d: ", y);
|
|
for (z = 0; z <(int)len; z++) {
|
|
fprintf(out, "%02X", output[z]);
|
|
}
|
|
fprintf(out, "\n");
|
|
|
|
/* forward the key */
|
|
for (z = 0; z < kl; z++) {
|
|
key[z] = output[z % len];
|
|
}
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
fclose(out);
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
reg_algs();
|
|
hash_gen();
|
|
cipher_gen();
|
|
hmac_gen();
|
|
omac_gen();
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|