tomcrypt/demos/tv_gen.c
2010-06-16 12:39:00 +02:00

787 lines
24 KiB
C

#include <tomcrypt.h>
void reg_algs(void)
{
int err;
#ifdef RIJNDAEL
register_cipher (&aes_desc);
#endif
#ifdef BLOWFISH
register_cipher (&blowfish_desc);
#endif
#ifdef XTEA
register_cipher (&xtea_desc);
#endif
#ifdef RC5
register_cipher (&rc5_desc);
#endif
#ifdef RC6
register_cipher (&rc6_desc);
#endif
#ifdef SAFERP
register_cipher (&saferp_desc);
#endif
#ifdef TWOFISH
register_cipher (&twofish_desc);
#endif
#ifdef SAFER
register_cipher (&safer_k64_desc);
register_cipher (&safer_sk64_desc);
register_cipher (&safer_k128_desc);
register_cipher (&safer_sk128_desc);
#endif
#ifdef RC2
register_cipher (&rc2_desc);
#endif
#ifdef DES
register_cipher (&des_desc);
register_cipher (&des3_desc);
#endif
#ifdef CAST5
register_cipher (&cast5_desc);
#endif
#ifdef NOEKEON
register_cipher (&noekeon_desc);
#endif
#ifdef SKIPJACK
register_cipher (&skipjack_desc);
#endif
#ifdef ANUBIS
register_cipher (&anubis_desc);
#endif
#ifdef KHAZAD
register_cipher (&khazad_desc);
#endif
#ifdef TIGER
register_hash (&tiger_desc);
#endif
#ifdef MD2
register_hash (&md2_desc);
#endif
#ifdef MD4
register_hash (&md4_desc);
#endif
#ifdef MD5
register_hash (&md5_desc);
#endif
#ifdef SHA1
register_hash (&sha1_desc);
#endif
#ifdef SHA224
register_hash (&sha224_desc);
#endif
#ifdef SHA256
register_hash (&sha256_desc);
#endif
#ifdef SHA384
register_hash (&sha384_desc);
#endif
#ifdef SHA512
register_hash (&sha512_desc);
#endif
#ifdef RIPEMD128
register_hash (&rmd128_desc);
#endif
#ifdef RIPEMD160
register_hash (&rmd160_desc);
#endif
#ifdef WHIRLPOOL
register_hash (&whirlpool_desc);
#endif
#ifdef CHC_HASH
register_hash(&chc_desc);
if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) {
printf("chc_register error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
#endif
#ifdef USE_LTM
ltc_mp = ltm_desc;
#elif defined(USE_TFM)
ltc_mp = tfm_desc;
#elif defined(USE_GMP)
ltc_mp = gmp_desc;
#else
extern ltc_math_descriptor EXT_MATH_LIB;
ltc_mp = EXT_MATH_LIB;
#endif
}
void hash_gen(void)
{
unsigned char md[MAXBLOCKSIZE], *buf;
unsigned long outlen, x, y, z;
FILE *out;
int err;
out = fopen("hash_tv.txt", "w");
if (out == NULL) {
perror("can't open hash_tv");
}
fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n");
for (x = 0; hash_descriptor[x].name != NULL; x++) {
buf = XMALLOC(2 * hash_descriptor[x].blocksize + 1);
if (buf == NULL) {
perror("can't alloc mem");
exit(EXIT_FAILURE);
}
fprintf(out, "Hash: %s\n", hash_descriptor[x].name);
for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) {
for (z = 0; z < y; z++) {
buf[z] = (unsigned char)(z & 255);
}
outlen = sizeof(md);
if ((err = hash_memory(x, buf, y, md, &outlen)) != CRYPT_OK) {
printf("hash_memory error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3lu: ", y);
for (z = 0; z < outlen; z++) {
fprintf(out, "%02X", md[z]);
}
fprintf(out, "\n");
}
fprintf(out, "\n");
XFREE(buf);
}
fclose(out);
}
void cipher_gen(void)
{
unsigned char *key, pt[MAXBLOCKSIZE];
unsigned long x, y, z, w;
int err, kl, lastkl;
FILE *out;
symmetric_key skey;
out = fopen("cipher_tv.txt", "w");
fprintf(out,
"Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n"
"The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name);
/* three modes, smallest, medium, large keys */
lastkl = 10000;
for (y = 0; y < 3; y++) {
switch (y) {
case 0: kl = cipher_descriptor[x].min_key_length; break;
case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break;
case 2: kl = cipher_descriptor[x].max_key_length; break;
}
if ((err = cipher_descriptor[x].keysize(&kl)) != CRYPT_OK) {
printf("keysize error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (kl == lastkl) break;
lastkl = kl;
fprintf(out, "Key Size: %d bytes\n", kl);
key = XMALLOC(kl);
if (key == NULL) {
perror("can't malloc memory");
exit(EXIT_FAILURE);
}
for (z = 0; (int)z < kl; z++) {
key[z] = (unsigned char)z;
}
if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
printf("setup error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
pt[z] = (unsigned char)z;
}
for (w = 0; w < 50; w++) {
cipher_descriptor[x].ecb_encrypt(pt, pt, &skey);
fprintf(out, "%2lu: ", w);
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
fprintf(out, "%02X", pt[z]);
}
fprintf(out, "\n");
/* reschedule a new key */
for (z = 0; z < (unsigned long)kl; z++) {
key[z] = pt[z % cipher_descriptor[x].block_length];
}
if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
printf("cipher setup2 error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
}
fprintf(out, "\n");
XFREE(key);
}
fprintf(out, "\n");
}
fclose(out);
}
void hmac_gen(void)
{
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], *input;
int x, y, z, err;
FILE *out;
unsigned long len;
out = fopen("hmac_tv.txt", "w");
fprintf(out,
"HMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed. The initial key is\n"
"of the same format (the same length as the HASH output size). The HMAC key in step N+1 is the HMAC output of\n"
"step N.\n\n");
for (x = 0; hash_descriptor[x].name != NULL; x++) {
fprintf(out, "HMAC-%s\n", hash_descriptor[x].name);
/* initial key */
for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) {
key[y] = (y&255);
}
input = XMALLOC(hash_descriptor[x].blocksize * 2 + 1);
if (input == NULL) {
perror("Can't malloc memory");
exit(EXIT_FAILURE);
}
for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) {
for (z = 0; z < y; z++) {
input[z] = (unsigned char)(z & 255);
}
len = sizeof(output);
if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) {
printf("Error hmacing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y);
for (z = 0; z <(int) len; z++) {
fprintf(out, "%02X", output[z]);
}
fprintf(out, "\n");
/* forward the key */
memcpy(key, output, hash_descriptor[x].hashsize);
}
XFREE(input);
fprintf(out, "\n");
}
fclose(out);
}
void omac_gen(void)
{
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
int err, x, y, z, kl;
FILE *out;
unsigned long len;
out = fopen("omac_tv.txt", "w");
fprintf(out,
"OMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed. The initial key is\n"
"of the same format (length specified per cipher). The OMAC key in step N+1 is the OMAC output of\n"
"step N (repeated as required to fill the array).\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* initial key/block */
for (y = 0; y < kl; y++) {
key[y] = (y & 255);
}
for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
for (z = 0; z < y; z++) {
input[z] = (unsigned char)(z & 255);
}
len = sizeof(output);
if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
printf("Error omacing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y);
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", output[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = output[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
void pmac_gen(void)
{
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
int err, x, y, z, kl;
FILE *out;
unsigned long len;
out = fopen("pmac_tv.txt", "w");
fprintf(out,
"PMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed. The initial key is\n"
"of the same format (length specified per cipher). The OMAC key in step N+1 is the OMAC output of\n"
"step N (repeated as required to fill the array).\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "PMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* initial key/block */
for (y = 0; y < kl; y++) {
key[y] = (y & 255);
}
for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
for (z = 0; z < y; z++) {
input[z] = (unsigned char)(z & 255);
}
len = sizeof(output);
if ((err = pmac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
printf("Error omacing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y);
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", output[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = output[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
void eax_gen(void)
{
int err, kl, x, y1, z;
FILE *out;
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], header[MAXBLOCKSIZE*2],
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("eax_tv.txt", "w");
fprintf(out, "EAX Test Vectors. Uses the 00010203...NN-1 pattern for header/nonce/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently.\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "EAX-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
nonce[z] = (unsigned char)(z & 255);
header[z] = (unsigned char)(z & 255);
}
len = sizeof(tag);
if ((err = eax_encrypt_authenticate_memory(x, key, kl, nonce, y1, header, y1, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
printf("Error EAX'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
void ocb_gen(void)
{
int err, kl, x, y1, z;
FILE *out;
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("ocb_tv.txt", "w");
fprintf(out, "OCB Test Vectors. Uses the 00010203...NN-1 pattern for nonce/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently. The nonce is fixed throughout.\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
/* fixed nonce */
for (z = 0; z < cipher_descriptor[x].block_length; z++) {
nonce[z] = z;
}
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
}
len = sizeof(tag);
if ((err = ocb_encrypt_authenticate_memory(x, key, kl, nonce, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
printf("Error OCB'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
void ccm_gen(void)
{
int err, kl, x, y1, z;
FILE *out;
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("ccm_tv.txt", "w");
fprintf(out, "CCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 128 bit block sizes */
if (kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "CCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
/* fixed nonce */
for (z = 0; z < cipher_descriptor[x].block_length; z++) {
nonce[z] = z;
}
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
}
len = sizeof(tag);
if ((err = ccm_memory(x, key, kl, NULL, nonce, 13, plaintext, y1, plaintext, y1, plaintext, tag, &len, CCM_ENCRYPT)) != CRYPT_OK) {
printf("Error CCM'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
void gcm_gen(void)
{
int err, kl, x, y1, z;
FILE *out;
unsigned char key[MAXBLOCKSIZE], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("gcm_tv.txt", "w");
fprintf(out, "GCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 128 bit block sizes */
if (kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "GCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
}
len = sizeof(tag);
if ((err = gcm_memory(x, key, kl, plaintext, y1, plaintext, y1, plaintext, y1, plaintext, tag, &len, GCM_ENCRYPT)) != CRYPT_OK) {
printf("Error GCM'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
void base64_gen(void)
{
FILE *out;
unsigned char dst[256], src[32];
unsigned long x, y, len;
out = fopen("base64_tv.txt", "w");
fprintf(out, "Base64 vectors. These are the base64 encodings of the strings 00,01,02...NN-1\n\n");
for (x = 0; x <= 32; x++) {
for (y = 0; y < x; y++) {
src[y] = y;
}
len = sizeof(dst);
base64_encode(src, x, dst, &len);
fprintf(out, "%2lu: %s\n", x, dst);
}
fclose(out);
}
void math_gen(void)
{
}
void ecc_gen(void)
{
FILE *out;
unsigned char str[512];
void *k, *order, *modulus;
ecc_point *G, *R;
int x;
out = fopen("ecc_tv.txt", "w");
fprintf(out, "ecc vectors. These are for kG for k=1,3,9,27,...,3**n until k > order of the curve outputs are <k,x,y> triplets\n\n");
G = ltc_ecc_new_point();
R = ltc_ecc_new_point();
mp_init(&k);
mp_init(&order);
mp_init(&modulus);
for (x = 0; ltc_ecc_sets[x].size != 0; x++) {
fprintf(out, "ECC-%d\n", ltc_ecc_sets[x].size*8);
mp_set(k, 1);
mp_read_radix(order, (char *)ltc_ecc_sets[x].order, 16);
mp_read_radix(modulus, (char *)ltc_ecc_sets[x].prime, 16);
mp_read_radix(G->x, (char *)ltc_ecc_sets[x].Gx, 16);
mp_read_radix(G->y, (char *)ltc_ecc_sets[x].Gy, 16);
mp_set(G->z, 1);
while (mp_cmp(k, order) == LTC_MP_LT) {
ltc_mp.ecc_ptmul(k, G, R, modulus, 1);
mp_tohex(k, (char*)str); fprintf(out, "%s, ", (char*)str);
mp_tohex(R->x, (char*)str); fprintf(out, "%s, ", (char*)str);
mp_tohex(R->y, (char*)str); fprintf(out, "%s\n", (char*)str);
mp_mul_d(k, 3, k);
}
}
mp_clear_multi(k, order, modulus, NULL);
ltc_ecc_del_point(G);
ltc_ecc_del_point(R);
fclose(out);
}
void lrw_gen(void)
{
FILE *out;
unsigned char tweak[16], key[16], iv[16], buf[1024];
int x, y, err;
symmetric_LRW lrw;
/* initialize default key and tweak */
for (x = 0; x < 16; x++) {
tweak[x] = key[x] = iv[x] = x;
}
out = fopen("lrw_tv.txt", "w");
for (x = 16; x < (int)(sizeof(buf)); x += 16) {
if ((err = lrw_start(find_cipher("aes"), iv, key, 16, tweak, 0, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error starting LRW-AES: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* encrypt incremental */
for (y = 0; y < x; y++) {
buf[y] = y & 255;
}
if ((err = lrw_encrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error encrypting with LRW-AES: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* display it */
fprintf(out, "%d:", x);
for (y = 0; y < x; y++) {
fprintf(out, "%02x", buf[y]);
}
fprintf(out, "\n");
/* reset IV */
if ((err = lrw_setiv(iv, 16, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error setting IV: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* copy new tweak, iv and key */
for (y = 0; y < 16; y++) {
key[y] = buf[y];
iv[y] = buf[(y+16)%x];
tweak[y] = buf[(y+32)%x];
}
if ((err = lrw_decrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error decrypting with LRW-AES: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* display it */
fprintf(out, "%d:", x);
for (y = 0; y < x; y++) {
fprintf(out, "%02x", buf[y]);
}
fprintf(out, "\n");
lrw_done(&lrw);
}
fclose(out);
}
int main(void)
{
reg_algs();
printf("Generating hash vectors..."); fflush(stdout); hash_gen(); printf("done\n");
printf("Generating cipher vectors..."); fflush(stdout); cipher_gen(); printf("done\n");
printf("Generating HMAC vectors..."); fflush(stdout); hmac_gen(); printf("done\n");
printf("Generating OMAC vectors..."); fflush(stdout); omac_gen(); printf("done\n");
printf("Generating PMAC vectors..."); fflush(stdout); pmac_gen(); printf("done\n");
printf("Generating EAX vectors..."); fflush(stdout); eax_gen(); printf("done\n");
printf("Generating OCB vectors..."); fflush(stdout); ocb_gen(); printf("done\n");
printf("Generating CCM vectors..."); fflush(stdout); ccm_gen(); printf("done\n");
printf("Generating GCM vectors..."); fflush(stdout); gcm_gen(); printf("done\n");
printf("Generating BASE64 vectors..."); fflush(stdout); base64_gen(); printf("done\n");
printf("Generating MATH vectors..."); fflush(stdout); math_gen(); printf("done\n");
printf("Generating ECC vectors..."); fflush(stdout); ecc_gen(); printf("done\n");
printf("Generating LRW vectors..."); fflush(stdout); lrw_gen(); printf("done\n");
return 0;
}
/* $Source$ */
/* $Revision$ */
/* $Date$ */