271 lines
7.0 KiB
C
271 lines
7.0 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
/* Implementation of the Noekeon block cipher by Tom St Denis */
|
|
#include "mycrypt.h"
|
|
|
|
#ifdef NOEKEON
|
|
|
|
const struct _cipher_descriptor noekeon_desc =
|
|
{
|
|
"noekeon",
|
|
16,
|
|
16, 16, 16, 16,
|
|
&noekeon_setup,
|
|
&noekeon_ecb_encrypt,
|
|
&noekeon_ecb_decrypt,
|
|
&noekeon_test,
|
|
&noekeon_keysize
|
|
};
|
|
|
|
static const ulong32 RC[] = {
|
|
0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
|
|
0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
|
|
0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
|
|
0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
|
|
0x000000d4UL
|
|
};
|
|
|
|
|
|
#define kTHETA(a, b, c, d) \
|
|
temp = a^c; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
|
|
b ^= temp; d ^= temp; \
|
|
temp = b^d; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
|
|
a ^= temp; c ^= temp;
|
|
|
|
#define THETA(k, a, b, c, d) \
|
|
temp = a^c; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
|
|
b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
|
|
temp = b^d; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
|
|
a ^= temp ^ k[0]; c ^= temp ^ k[2];
|
|
|
|
#define GAMMA(a, b, c, d) \
|
|
b ^= ~(d|c); \
|
|
a ^= c&b; \
|
|
temp = d; d = a; a = temp;\
|
|
c ^= a ^ b ^ d; \
|
|
b ^= ~(d|c); \
|
|
a ^= c&b;
|
|
|
|
#define PI1(a, b, c, d) \
|
|
a = ROL(a, 1); c = ROL(c, 5); d = ROL(d, 2);
|
|
|
|
#define PI2(a, b, c, d) \
|
|
a = ROR(a, 1); c = ROR(c, 5); d = ROR(d, 2);
|
|
|
|
int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
|
|
{
|
|
ulong32 temp;
|
|
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (keylen != 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
if (num_rounds != 16 && num_rounds != 0) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
LOAD32H(skey->noekeon.K[0],&key[0]);
|
|
LOAD32H(skey->noekeon.K[1],&key[4]);
|
|
LOAD32H(skey->noekeon.K[2],&key[8]);
|
|
LOAD32H(skey->noekeon.K[3],&key[12]);
|
|
|
|
LOAD32H(skey->noekeon.dK[0],&key[0]);
|
|
LOAD32H(skey->noekeon.dK[1],&key[4]);
|
|
LOAD32H(skey->noekeon.dK[2],&key[8]);
|
|
LOAD32H(skey->noekeon.dK[3],&key[12]);
|
|
|
|
kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
|
|
#else
|
|
void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
|
|
#endif
|
|
{
|
|
ulong32 a,b,c,d,temp;
|
|
#ifdef SMALL_CODE
|
|
int r;
|
|
#endif
|
|
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
|
|
LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
|
|
LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
|
|
|
|
#define ROUND(i) \
|
|
a ^= RC[i]; \
|
|
THETA(key->noekeon.K, a,b,c,d); \
|
|
PI1(a,b,c,d); \
|
|
GAMMA(a,b,c,d); \
|
|
PI2(a,b,c,d);
|
|
|
|
#ifdef SMALL_CODE
|
|
for (r = 0; r < 16; ++r) {
|
|
ROUND(r);
|
|
}
|
|
#else
|
|
ROUND( 0); ROUND( 1); ROUND( 2); ROUND( 3);
|
|
ROUND( 4); ROUND( 5); ROUND( 6); ROUND( 7);
|
|
ROUND( 8); ROUND( 9); ROUND(10); ROUND(11);
|
|
ROUND(12); ROUND(13); ROUND(14); ROUND(15);
|
|
#endif
|
|
|
|
#undef ROUND
|
|
|
|
a ^= RC[16];
|
|
THETA(key->noekeon.K, a, b, c, d);
|
|
|
|
STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
|
|
STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
|
|
{
|
|
_noekeon_ecb_encrypt(pt, ct, key);
|
|
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
|
|
#else
|
|
void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
|
|
#endif
|
|
{
|
|
ulong32 a,b,c,d, temp;
|
|
#ifdef SMALL_CODE
|
|
int r;
|
|
#endif
|
|
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
|
|
LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
|
|
LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
|
|
|
|
|
|
#define ROUND(i) \
|
|
THETA(key->noekeon.dK, a,b,c,d); \
|
|
a ^= RC[i]; \
|
|
PI1(a,b,c,d); \
|
|
GAMMA(a,b,c,d); \
|
|
PI2(a,b,c,d);
|
|
|
|
#ifdef SMALL_CODE
|
|
for (r = 16; r > 0; --r) {
|
|
ROUND(r);
|
|
}
|
|
#else
|
|
ROUND(16); ROUND(15); ROUND(14); ROUND(13);
|
|
ROUND(12); ROUND(11); ROUND(10); ROUND( 9);
|
|
ROUND( 8); ROUND( 7); ROUND( 6); ROUND( 5);
|
|
ROUND( 4); ROUND( 3); ROUND( 2); ROUND( 1);
|
|
#endif
|
|
|
|
#undef ROUND
|
|
|
|
THETA(key->noekeon.dK, a,b,c,d);
|
|
a ^= RC[0];
|
|
STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
|
|
STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
|
|
{
|
|
_noekeon_ecb_decrypt(ct, pt, key);
|
|
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
|
|
}
|
|
#endif
|
|
|
|
int noekeon_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const struct {
|
|
int keylen;
|
|
unsigned char key[16], pt[16], ct[16];
|
|
} tests[] = {
|
|
{
|
|
16,
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
|
{ 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73,
|
|
0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5}
|
|
}
|
|
};
|
|
symmetric_key key;
|
|
unsigned char tmp[2][16];
|
|
int err, i, y;
|
|
|
|
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
|
|
zeromem(&key, sizeof(key));
|
|
if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
|
|
noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
|
|
if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
|
|
#if 0
|
|
printf("\n\nTest %d failed\n", i);
|
|
if (memcmp(tmp[0], tests[i].ct, 16)) {
|
|
printf("CT: ");
|
|
for (i = 0; i < 16; i++) {
|
|
printf("%02x ", tmp[0][i]);
|
|
}
|
|
printf("\n");
|
|
} else {
|
|
printf("PT: ");
|
|
for (i = 0; i < 16; i++) {
|
|
printf("%02x ", tmp[1][i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 16; y++) tmp[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
|
|
for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
|
|
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
int noekeon_keysize(int *desired_keysize)
|
|
{
|
|
_ARGCHK(desired_keysize != NULL);
|
|
if (*desired_keysize < 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
} else {
|
|
*desired_keysize = 16;
|
|
return CRYPT_OK;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|