702 lines
17 KiB
C
702 lines
17 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
|
|
/* AES implementation by Tom St Denis
|
|
*
|
|
* Derived from the Public Domain source code by
|
|
|
|
---
|
|
* rijndael-alg-fst.c
|
|
*
|
|
* @version 3.0 (December 2000)
|
|
*
|
|
* Optimised ANSI C code for the Rijndael cipher (now AES)
|
|
*
|
|
* @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
|
|
* @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
|
|
* @author Paulo Barreto <paulo.barreto@terra.com.br>
|
|
---
|
|
*/
|
|
|
|
#include "mycrypt.h"
|
|
|
|
#ifdef RIJNDAEL
|
|
|
|
#ifndef ENCRYPT_ONLY
|
|
|
|
#define SETUP rijndael_setup
|
|
#define ECB_ENC rijndael_ecb_encrypt
|
|
#define ECB_DEC rijndael_ecb_decrypt
|
|
#define ECB_TEST rijndael_test
|
|
#define ECB_KS rijndael_keysize
|
|
|
|
const struct _cipher_descriptor rijndael_desc =
|
|
{
|
|
"rijndael",
|
|
6,
|
|
16, 32, 16, 10,
|
|
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_KS
|
|
};
|
|
|
|
const struct _cipher_descriptor aes_desc =
|
|
{
|
|
"aes",
|
|
6,
|
|
16, 32, 16, 10,
|
|
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_KS
|
|
};
|
|
|
|
#else
|
|
|
|
#define SETUP rijndael_enc_setup
|
|
#define ECB_ENC rijndael_enc_ecb_encrypt
|
|
#define ECB_KS rijndael_enc_keysize
|
|
|
|
const struct _cipher_descriptor rijndael_enc_desc =
|
|
{
|
|
"rijndael",
|
|
6,
|
|
16, 32, 16, 10,
|
|
SETUP, ECB_ENC, NULL, NULL, ECB_KS
|
|
};
|
|
|
|
const struct _cipher_descriptor aes_enc_desc =
|
|
{
|
|
"aes",
|
|
6,
|
|
16, 32, 16, 10,
|
|
SETUP, ECB_ENC, NULL, NULL, ECB_KS
|
|
};
|
|
|
|
#endif
|
|
|
|
#include "aes_tab.c"
|
|
|
|
static ulong32 setup_mix(ulong32 temp)
|
|
{
|
|
return (Te4_3[byte(temp, 2)]) ^
|
|
(Te4_2[byte(temp, 1)]) ^
|
|
(Te4_1[byte(temp, 0)]) ^
|
|
(Te4_0[byte(temp, 3)]);
|
|
}
|
|
|
|
#ifndef ENCRYPT_ONLY
|
|
#ifdef SMALL_CODE
|
|
static ulong32 setup_mix2(ulong32 temp)
|
|
{
|
|
return Td0(255 & Te4[byte(temp, 3)]) ^
|
|
Td1(255 & Te4[byte(temp, 2)]) ^
|
|
Td2(255 & Te4[byte(temp, 1)]) ^
|
|
Td3(255 & Te4[byte(temp, 0)]);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
int SETUP(const unsigned char *key, int keylen, int rounds, symmetric_key *skey)
|
|
{
|
|
int i, j;
|
|
ulong32 temp, *rk;
|
|
#ifndef ENCRYPT_ONLY
|
|
ulong32 *rrk;
|
|
#endif
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (keylen != 16 && keylen != 24 && keylen != 32) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
if (rounds != 0 && rounds != (10 + ((keylen/8)-2)*2)) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
|
|
|
|
/* setup the forward key */
|
|
i = 0;
|
|
rk = skey->rijndael.eK;
|
|
LOAD32H(rk[0], key );
|
|
LOAD32H(rk[1], key + 4);
|
|
LOAD32H(rk[2], key + 8);
|
|
LOAD32H(rk[3], key + 12);
|
|
if (keylen == 16) {
|
|
j = 44;
|
|
for (;;) {
|
|
temp = rk[3];
|
|
rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
|
|
rk[5] = rk[1] ^ rk[4];
|
|
rk[6] = rk[2] ^ rk[5];
|
|
rk[7] = rk[3] ^ rk[6];
|
|
if (++i == 10) {
|
|
break;
|
|
}
|
|
rk += 4;
|
|
}
|
|
} else if (keylen == 24) {
|
|
j = 52;
|
|
LOAD32H(rk[4], key + 16);
|
|
LOAD32H(rk[5], key + 20);
|
|
for (;;) {
|
|
#ifdef _MSC_VER
|
|
temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5];
|
|
#else
|
|
temp = rk[5];
|
|
#endif
|
|
rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
|
|
rk[ 7] = rk[ 1] ^ rk[ 6];
|
|
rk[ 8] = rk[ 2] ^ rk[ 7];
|
|
rk[ 9] = rk[ 3] ^ rk[ 8];
|
|
if (++i == 8) {
|
|
break;
|
|
}
|
|
rk[10] = rk[ 4] ^ rk[ 9];
|
|
rk[11] = rk[ 5] ^ rk[10];
|
|
rk += 6;
|
|
}
|
|
} else if (keylen == 32) {
|
|
j = 60;
|
|
LOAD32H(rk[4], key + 16);
|
|
LOAD32H(rk[5], key + 20);
|
|
LOAD32H(rk[6], key + 24);
|
|
LOAD32H(rk[7], key + 28);
|
|
for (;;) {
|
|
#ifdef _MSC_VER
|
|
temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7];
|
|
#else
|
|
temp = rk[7];
|
|
#endif
|
|
rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
|
|
rk[ 9] = rk[ 1] ^ rk[ 8];
|
|
rk[10] = rk[ 2] ^ rk[ 9];
|
|
rk[11] = rk[ 3] ^ rk[10];
|
|
if (++i == 7) {
|
|
break;
|
|
}
|
|
temp = rk[11];
|
|
rk[12] = rk[ 4] ^ setup_mix(ROR(temp, 8));
|
|
rk[13] = rk[ 5] ^ rk[12];
|
|
rk[14] = rk[ 6] ^ rk[13];
|
|
rk[15] = rk[ 7] ^ rk[14];
|
|
rk += 8;
|
|
}
|
|
} else {
|
|
/* this can't happen */
|
|
j = 4;
|
|
}
|
|
|
|
#ifndef ENCRYPT_ONLY
|
|
/* setup the inverse key now */
|
|
rk = skey->rijndael.dK;
|
|
rrk = skey->rijndael.eK + j - 4;
|
|
|
|
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
|
|
/* copy first */
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk = *rrk;
|
|
rk -= 3; rrk -= 3;
|
|
|
|
for (i = 1; i < skey->rijndael.Nr; i++) {
|
|
rrk -= 4;
|
|
rk += 4;
|
|
#ifdef SMALL_CODE
|
|
temp = rrk[0];
|
|
rk[0] = setup_mix2(temp);
|
|
temp = rrk[1];
|
|
rk[1] = setup_mix2(temp);
|
|
temp = rrk[2];
|
|
rk[2] = setup_mix2(temp);
|
|
temp = rrk[3];
|
|
rk[3] = setup_mix2(temp);
|
|
#else
|
|
temp = rrk[0];
|
|
rk[0] =
|
|
Tks0[byte(temp, 3)] ^
|
|
Tks1[byte(temp, 2)] ^
|
|
Tks2[byte(temp, 1)] ^
|
|
Tks3[byte(temp, 0)];
|
|
temp = rrk[1];
|
|
rk[1] =
|
|
Tks0[byte(temp, 3)] ^
|
|
Tks1[byte(temp, 2)] ^
|
|
Tks2[byte(temp, 1)] ^
|
|
Tks3[byte(temp, 0)];
|
|
temp = rrk[2];
|
|
rk[2] =
|
|
Tks0[byte(temp, 3)] ^
|
|
Tks1[byte(temp, 2)] ^
|
|
Tks2[byte(temp, 1)] ^
|
|
Tks3[byte(temp, 0)];
|
|
temp = rrk[3];
|
|
rk[3] =
|
|
Tks0[byte(temp, 3)] ^
|
|
Tks1[byte(temp, 2)] ^
|
|
Tks2[byte(temp, 1)] ^
|
|
Tks3[byte(temp, 0)];
|
|
#endif
|
|
|
|
}
|
|
|
|
/* copy last */
|
|
rrk -= 4;
|
|
rk += 4;
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk = *rrk;
|
|
#endif /* ENCRYPT_ONLY */
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
|
|
#else
|
|
void ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
|
|
#endif
|
|
{
|
|
ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
|
|
int Nr, r;
|
|
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
Nr = skey->rijndael.Nr;
|
|
rk = skey->rijndael.eK;
|
|
|
|
/*
|
|
* map byte array block to cipher state
|
|
* and add initial round key:
|
|
*/
|
|
LOAD32H(s0, pt ); s0 ^= rk[0];
|
|
LOAD32H(s1, pt + 4); s1 ^= rk[1];
|
|
LOAD32H(s2, pt + 8); s2 ^= rk[2];
|
|
LOAD32H(s3, pt + 12); s3 ^= rk[3];
|
|
|
|
|
|
#ifdef SMALL_CODE
|
|
|
|
for (r = 0; ; r++) {
|
|
rk += 4;
|
|
t0 =
|
|
Te0(byte(s0, 3)) ^
|
|
Te1(byte(s1, 2)) ^
|
|
Te2(byte(s2, 1)) ^
|
|
Te3(byte(s3, 0)) ^
|
|
rk[0];
|
|
t1 =
|
|
Te0(byte(s1, 3)) ^
|
|
Te1(byte(s2, 2)) ^
|
|
Te2(byte(s3, 1)) ^
|
|
Te3(byte(s0, 0)) ^
|
|
rk[1];
|
|
t2 =
|
|
Te0(byte(s2, 3)) ^
|
|
Te1(byte(s3, 2)) ^
|
|
Te2(byte(s0, 1)) ^
|
|
Te3(byte(s1, 0)) ^
|
|
rk[2];
|
|
t3 =
|
|
Te0(byte(s3, 3)) ^
|
|
Te1(byte(s0, 2)) ^
|
|
Te2(byte(s1, 1)) ^
|
|
Te3(byte(s2, 0)) ^
|
|
rk[3];
|
|
if (r == Nr-2) {
|
|
break;
|
|
}
|
|
s0 = t0; s1 = t1; s2 = t2; s3 = t3;
|
|
}
|
|
rk += 4;
|
|
|
|
#else
|
|
|
|
/*
|
|
* Nr - 1 full rounds:
|
|
*/
|
|
r = Nr >> 1;
|
|
for (;;) {
|
|
t0 =
|
|
Te0(byte(s0, 3)) ^
|
|
Te1(byte(s1, 2)) ^
|
|
Te2(byte(s2, 1)) ^
|
|
Te3(byte(s3, 0)) ^
|
|
rk[4];
|
|
t1 =
|
|
Te0(byte(s1, 3)) ^
|
|
Te1(byte(s2, 2)) ^
|
|
Te2(byte(s3, 1)) ^
|
|
Te3(byte(s0, 0)) ^
|
|
rk[5];
|
|
t2 =
|
|
Te0(byte(s2, 3)) ^
|
|
Te1(byte(s3, 2)) ^
|
|
Te2(byte(s0, 1)) ^
|
|
Te3(byte(s1, 0)) ^
|
|
rk[6];
|
|
t3 =
|
|
Te0(byte(s3, 3)) ^
|
|
Te1(byte(s0, 2)) ^
|
|
Te2(byte(s1, 1)) ^
|
|
Te3(byte(s2, 0)) ^
|
|
rk[7];
|
|
|
|
rk += 8;
|
|
if (--r == 0) {
|
|
break;
|
|
}
|
|
|
|
s0 =
|
|
Te0(byte(t0, 3)) ^
|
|
Te1(byte(t1, 2)) ^
|
|
Te2(byte(t2, 1)) ^
|
|
Te3(byte(t3, 0)) ^
|
|
rk[0];
|
|
s1 =
|
|
Te0(byte(t1, 3)) ^
|
|
Te1(byte(t2, 2)) ^
|
|
Te2(byte(t3, 1)) ^
|
|
Te3(byte(t0, 0)) ^
|
|
rk[1];
|
|
s2 =
|
|
Te0(byte(t2, 3)) ^
|
|
Te1(byte(t3, 2)) ^
|
|
Te2(byte(t0, 1)) ^
|
|
Te3(byte(t1, 0)) ^
|
|
rk[2];
|
|
s3 =
|
|
Te0(byte(t3, 3)) ^
|
|
Te1(byte(t0, 2)) ^
|
|
Te2(byte(t1, 1)) ^
|
|
Te3(byte(t2, 0)) ^
|
|
rk[3];
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* apply last round and
|
|
* map cipher state to byte array block:
|
|
*/
|
|
s0 =
|
|
(Te4_3[byte(t0, 3)]) ^
|
|
(Te4_2[byte(t1, 2)]) ^
|
|
(Te4_1[byte(t2, 1)]) ^
|
|
(Te4_0[byte(t3, 0)]) ^
|
|
rk[0];
|
|
STORE32H(s0, ct);
|
|
s1 =
|
|
(Te4_3[byte(t1, 3)]) ^
|
|
(Te4_2[byte(t2, 2)]) ^
|
|
(Te4_1[byte(t3, 1)]) ^
|
|
(Te4_0[byte(t0, 0)]) ^
|
|
rk[1];
|
|
STORE32H(s1, ct+4);
|
|
s2 =
|
|
(Te4_3[byte(t2, 3)]) ^
|
|
(Te4_2[byte(t3, 2)]) ^
|
|
(Te4_1[byte(t0, 1)]) ^
|
|
(Te4_0[byte(t1, 0)]) ^
|
|
rk[2];
|
|
STORE32H(s2, ct+8);
|
|
s3 =
|
|
(Te4_3[byte(t3, 3)]) ^
|
|
(Te4_2[byte(t0, 2)]) ^
|
|
(Te4_1[byte(t1, 1)]) ^
|
|
(Te4_0[byte(t2, 0)]) ^
|
|
rk[3];
|
|
STORE32H(s3, ct+12);
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
|
|
{
|
|
_rijndael_ecb_encrypt(pt, ct, skey);
|
|
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
|
|
}
|
|
#endif
|
|
|
|
#ifndef ENCRYPT_ONLY
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
|
|
#else
|
|
void ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
|
|
#endif
|
|
{
|
|
ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
|
|
int Nr, r;
|
|
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
Nr = skey->rijndael.Nr;
|
|
rk = skey->rijndael.dK;
|
|
|
|
/*
|
|
* map byte array block to cipher state
|
|
* and add initial round key:
|
|
*/
|
|
LOAD32H(s0, ct ); s0 ^= rk[0];
|
|
LOAD32H(s1, ct + 4); s1 ^= rk[1];
|
|
LOAD32H(s2, ct + 8); s2 ^= rk[2];
|
|
LOAD32H(s3, ct + 12); s3 ^= rk[3];
|
|
|
|
#ifdef SMALL_CODE
|
|
for (r = 0; ; r++) {
|
|
rk += 4;
|
|
t0 =
|
|
Td0(byte(s0, 3)) ^
|
|
Td1(byte(s3, 2)) ^
|
|
Td2(byte(s2, 1)) ^
|
|
Td3(byte(s1, 0)) ^
|
|
rk[0];
|
|
t1 =
|
|
Td0(byte(s1, 3)) ^
|
|
Td1(byte(s0, 2)) ^
|
|
Td2(byte(s3, 1)) ^
|
|
Td3(byte(s2, 0)) ^
|
|
rk[1];
|
|
t2 =
|
|
Td0(byte(s2, 3)) ^
|
|
Td1(byte(s1, 2)) ^
|
|
Td2(byte(s0, 1)) ^
|
|
Td3(byte(s3, 0)) ^
|
|
rk[2];
|
|
t3 =
|
|
Td0(byte(s3, 3)) ^
|
|
Td1(byte(s2, 2)) ^
|
|
Td2(byte(s1, 1)) ^
|
|
Td3(byte(s0, 0)) ^
|
|
rk[3];
|
|
if (r == Nr-2) {
|
|
break;
|
|
}
|
|
s0 = t0; s1 = t1; s2 = t2; s3 = t3;
|
|
}
|
|
rk += 4;
|
|
|
|
#else
|
|
|
|
/*
|
|
* Nr - 1 full rounds:
|
|
*/
|
|
r = Nr >> 1;
|
|
for (;;) {
|
|
|
|
t0 =
|
|
Td0(byte(s0, 3)) ^
|
|
Td1(byte(s3, 2)) ^
|
|
Td2(byte(s2, 1)) ^
|
|
Td3(byte(s1, 0)) ^
|
|
rk[4];
|
|
t1 =
|
|
Td0(byte(s1, 3)) ^
|
|
Td1(byte(s0, 2)) ^
|
|
Td2(byte(s3, 1)) ^
|
|
Td3(byte(s2, 0)) ^
|
|
rk[5];
|
|
t2 =
|
|
Td0(byte(s2, 3)) ^
|
|
Td1(byte(s1, 2)) ^
|
|
Td2(byte(s0, 1)) ^
|
|
Td3(byte(s3, 0)) ^
|
|
rk[6];
|
|
t3 =
|
|
Td0(byte(s3, 3)) ^
|
|
Td1(byte(s2, 2)) ^
|
|
Td2(byte(s1, 1)) ^
|
|
Td3(byte(s0, 0)) ^
|
|
rk[7];
|
|
|
|
rk += 8;
|
|
if (--r == 0) {
|
|
break;
|
|
}
|
|
|
|
|
|
s0 =
|
|
Td0(byte(t0, 3)) ^
|
|
Td1(byte(t3, 2)) ^
|
|
Td2(byte(t2, 1)) ^
|
|
Td3(byte(t1, 0)) ^
|
|
rk[0];
|
|
s1 =
|
|
Td0(byte(t1, 3)) ^
|
|
Td1(byte(t0, 2)) ^
|
|
Td2(byte(t3, 1)) ^
|
|
Td3(byte(t2, 0)) ^
|
|
rk[1];
|
|
s2 =
|
|
Td0(byte(t2, 3)) ^
|
|
Td1(byte(t1, 2)) ^
|
|
Td2(byte(t0, 1)) ^
|
|
Td3(byte(t3, 0)) ^
|
|
rk[2];
|
|
s3 =
|
|
Td0(byte(t3, 3)) ^
|
|
Td1(byte(t2, 2)) ^
|
|
Td2(byte(t1, 1)) ^
|
|
Td3(byte(t0, 0)) ^
|
|
rk[3];
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* apply last round and
|
|
* map cipher state to byte array block:
|
|
*/
|
|
s0 =
|
|
(Td4[byte(t0, 3)] & 0xff000000) ^
|
|
(Td4[byte(t3, 2)] & 0x00ff0000) ^
|
|
(Td4[byte(t2, 1)] & 0x0000ff00) ^
|
|
(Td4[byte(t1, 0)] & 0x000000ff) ^
|
|
rk[0];
|
|
STORE32H(s0, pt);
|
|
s1 =
|
|
(Td4[byte(t1, 3)] & 0xff000000) ^
|
|
(Td4[byte(t0, 2)] & 0x00ff0000) ^
|
|
(Td4[byte(t3, 1)] & 0x0000ff00) ^
|
|
(Td4[byte(t2, 0)] & 0x000000ff) ^
|
|
rk[1];
|
|
STORE32H(s1, pt+4);
|
|
s2 =
|
|
(Td4[byte(t2, 3)] & 0xff000000) ^
|
|
(Td4[byte(t1, 2)] & 0x00ff0000) ^
|
|
(Td4[byte(t0, 1)] & 0x0000ff00) ^
|
|
(Td4[byte(t3, 0)] & 0x000000ff) ^
|
|
rk[2];
|
|
STORE32H(s2, pt+8);
|
|
s3 =
|
|
(Td4[byte(t3, 3)] & 0xff000000) ^
|
|
(Td4[byte(t2, 2)] & 0x00ff0000) ^
|
|
(Td4[byte(t1, 1)] & 0x0000ff00) ^
|
|
(Td4[byte(t0, 0)] & 0x000000ff) ^
|
|
rk[3];
|
|
STORE32H(s3, pt+12);
|
|
}
|
|
|
|
|
|
#ifdef CLEAN_STACK
|
|
void ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
|
|
{
|
|
_rijndael_ecb_decrypt(ct, pt, skey);
|
|
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
|
|
}
|
|
#endif
|
|
|
|
int ECB_TEST(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
int err;
|
|
static const struct {
|
|
int keylen;
|
|
unsigned char key[32], pt[16], ct[16];
|
|
} tests[] = {
|
|
{ 16,
|
|
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
|
|
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
|
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
|
|
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
|
|
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
|
|
}, {
|
|
24,
|
|
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
|
|
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
|
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
|
|
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
|
|
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
|
|
}, {
|
|
32,
|
|
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
|
|
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
|
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
|
|
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
|
|
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
|
|
}
|
|
};
|
|
|
|
symmetric_key key;
|
|
unsigned char tmp[2][16];
|
|
int i, y;
|
|
|
|
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
|
|
zeromem(&key, sizeof(key));
|
|
if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
|
|
rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
|
|
if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
|
|
#if 0
|
|
printf("\n\nTest %d failed\n", i);
|
|
if (memcmp(tmp[0], tests[i].ct, 16)) {
|
|
printf("CT: ");
|
|
for (i = 0; i < 16; i++) {
|
|
printf("%02x ", tmp[0][i]);
|
|
}
|
|
printf("\n");
|
|
} else {
|
|
printf("PT: ");
|
|
for (i = 0; i < 16; i++) {
|
|
printf("%02x ", tmp[1][i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 16; y++) tmp[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
|
|
for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
|
|
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
#endif /* ENCRYPT_ONLY */
|
|
|
|
int ECB_KS(int *desired_keysize)
|
|
{
|
|
_ARGCHK(desired_keysize != NULL);
|
|
|
|
if (*desired_keysize < 16)
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
if (*desired_keysize < 24) {
|
|
*desired_keysize = 16;
|
|
return CRYPT_OK;
|
|
} else if (*desired_keysize < 32) {
|
|
*desired_keysize = 24;
|
|
return CRYPT_OK;
|
|
} else {
|
|
*desired_keysize = 32;
|
|
return CRYPT_OK;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|