tomcrypt/dsa_make_key.c
2010-06-16 12:38:16 +02:00

129 lines
4.3 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
*/
#include "mycrypt.h"
#ifdef MDSA
int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
{
mp_int tmp, tmp2;
int err, res;
unsigned char *buf;
_ARGCHK(key != NULL);
/* check prng */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* check size */
if (group_size >= MDSA_MAX_GROUP || group_size <= 15 ||
group_size >= modulus_size || (modulus_size - group_size) >= MDSA_DELTA) {
return CRYPT_INVALID_ARG;
}
/* allocate ram */
buf = XMALLOC(MDSA_DELTA);
if (buf == NULL) {
return CRYPT_MEM;
}
/* init mp_ints */
if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != MP_OKAY) {
err = mpi_to_ltc_error(err);
goto __ERR;
}
/* make our prime q */
if ((err = rand_prime(&key->q, group_size*8, prng, wprng)) != CRYPT_OK) { goto __ERR; }
/* double q */
if ((err = mp_mul_2(&key->q, &tmp)) != MP_OKAY) { goto error; }
/* now make a random string and multply it against q */
if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) {
err = CRYPT_ERROR_READPRNG;
goto __ERR;
}
/* force magnitude */
buf[0] = 1;
/* force even */
buf[modulus_size - group_size] &= ~1;
if ((err = mp_read_unsigned_bin(&tmp2, buf, modulus_size - group_size+1)) != MP_OKAY) { goto error; }
if ((err = mp_mul(&key->q, &tmp2, &key->p)) != MP_OKAY) { goto error; }
if ((err = mp_add_d(&key->p, 1, &key->p)) != MP_OKAY) { goto error; }
/* now loop until p is prime */
for (;;) {
if ((err = is_prime(&key->p, &res)) != CRYPT_OK) { goto __ERR; }
if (res == MP_YES) break;
/* add 2q to p and 2 to tmp2 */
if ((err = mp_add(&tmp, &key->p, &key->p)) != MP_OKAY) { goto error; }
if ((err = mp_add_d(&tmp2, 2, &tmp2)) != MP_OKAY) { goto error; }
}
/* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */
mp_set(&key->g, 1);
do {
if ((err = mp_add_d(&key->g, 1, &key->g)) != MP_OKAY) { goto error; }
if ((err = mp_exptmod(&key->g, &tmp2, &key->p, &tmp)) != MP_OKAY) { goto error; }
} while (mp_cmp_d(&tmp, 1) == MP_EQ);
/* at this point tmp generates a group of order q mod p */
mp_exch(&tmp, &key->g);
/* so now we have our DH structure, generator g, order q, modulus p
Now we need a random exponent [mod q] and it's power g^x mod p
*/
do {
if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) {
err = CRYPT_ERROR_READPRNG;
goto __ERR;
}
if ((err = mp_read_unsigned_bin(&key->x, buf, group_size)) != MP_OKAY) { goto error; }
} while (mp_cmp_d(&key->x, 1) != MP_GT);
if ((err = mp_exptmod(&key->g, &key->x, &key->p, &key->y)) != MP_OKAY) { goto error; }
key->type = PK_PRIVATE;
key->qord = group_size;
/* shrink the ram required */
if ((err = mp_shrink(&key->g)) != MP_OKAY) { goto error; }
if ((err = mp_shrink(&key->p)) != MP_OKAY) { goto error; }
if ((err = mp_shrink(&key->q)) != MP_OKAY) { goto error; }
if ((err = mp_shrink(&key->x)) != MP_OKAY) { goto error; }
if ((err = mp_shrink(&key->y)) != MP_OKAY) { goto error; }
#ifdef CLEAN_STACK
zeromem(buf, MDSA_DELTA);
#endif
err = CRYPT_OK;
goto done;
error:
err = mpi_to_ltc_error(err);
__ERR:
mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL);
done:
mp_clear_multi(&tmp, &tmp2, NULL);
XFREE(buf);
return err;
}
#endif