129 lines
4.3 KiB
C
129 lines
4.3 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
#include "mycrypt.h"
|
|
|
|
#ifdef MDSA
|
|
|
|
int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
|
|
{
|
|
mp_int tmp, tmp2;
|
|
int err, res;
|
|
unsigned char *buf;
|
|
|
|
_ARGCHK(key != NULL);
|
|
|
|
/* check prng */
|
|
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
/* check size */
|
|
if (group_size >= MDSA_MAX_GROUP || group_size <= 15 ||
|
|
group_size >= modulus_size || (modulus_size - group_size) >= MDSA_DELTA) {
|
|
return CRYPT_INVALID_ARG;
|
|
}
|
|
|
|
/* allocate ram */
|
|
buf = XMALLOC(MDSA_DELTA);
|
|
if (buf == NULL) {
|
|
return CRYPT_MEM;
|
|
}
|
|
|
|
/* init mp_ints */
|
|
if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != MP_OKAY) {
|
|
err = mpi_to_ltc_error(err);
|
|
goto __ERR;
|
|
}
|
|
|
|
/* make our prime q */
|
|
if ((err = rand_prime(&key->q, group_size*8, prng, wprng)) != CRYPT_OK) { goto __ERR; }
|
|
|
|
/* double q */
|
|
if ((err = mp_mul_2(&key->q, &tmp)) != MP_OKAY) { goto error; }
|
|
|
|
/* now make a random string and multply it against q */
|
|
if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) {
|
|
err = CRYPT_ERROR_READPRNG;
|
|
goto __ERR;
|
|
}
|
|
|
|
/* force magnitude */
|
|
buf[0] = 1;
|
|
|
|
/* force even */
|
|
buf[modulus_size - group_size] &= ~1;
|
|
|
|
if ((err = mp_read_unsigned_bin(&tmp2, buf, modulus_size - group_size+1)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_mul(&key->q, &tmp2, &key->p)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_add_d(&key->p, 1, &key->p)) != MP_OKAY) { goto error; }
|
|
|
|
/* now loop until p is prime */
|
|
for (;;) {
|
|
if ((err = is_prime(&key->p, &res)) != CRYPT_OK) { goto __ERR; }
|
|
if (res == MP_YES) break;
|
|
|
|
/* add 2q to p and 2 to tmp2 */
|
|
if ((err = mp_add(&tmp, &key->p, &key->p)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_add_d(&tmp2, 2, &tmp2)) != MP_OKAY) { goto error; }
|
|
}
|
|
|
|
/* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */
|
|
mp_set(&key->g, 1);
|
|
|
|
do {
|
|
if ((err = mp_add_d(&key->g, 1, &key->g)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_exptmod(&key->g, &tmp2, &key->p, &tmp)) != MP_OKAY) { goto error; }
|
|
} while (mp_cmp_d(&tmp, 1) == MP_EQ);
|
|
|
|
/* at this point tmp generates a group of order q mod p */
|
|
mp_exch(&tmp, &key->g);
|
|
|
|
/* so now we have our DH structure, generator g, order q, modulus p
|
|
Now we need a random exponent [mod q] and it's power g^x mod p
|
|
*/
|
|
do {
|
|
if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) {
|
|
err = CRYPT_ERROR_READPRNG;
|
|
goto __ERR;
|
|
}
|
|
if ((err = mp_read_unsigned_bin(&key->x, buf, group_size)) != MP_OKAY) { goto error; }
|
|
} while (mp_cmp_d(&key->x, 1) != MP_GT);
|
|
if ((err = mp_exptmod(&key->g, &key->x, &key->p, &key->y)) != MP_OKAY) { goto error; }
|
|
|
|
key->type = PK_PRIVATE;
|
|
key->qord = group_size;
|
|
|
|
/* shrink the ram required */
|
|
if ((err = mp_shrink(&key->g)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_shrink(&key->p)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_shrink(&key->q)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_shrink(&key->x)) != MP_OKAY) { goto error; }
|
|
if ((err = mp_shrink(&key->y)) != MP_OKAY) { goto error; }
|
|
|
|
#ifdef CLEAN_STACK
|
|
zeromem(buf, MDSA_DELTA);
|
|
#endif
|
|
|
|
err = CRYPT_OK;
|
|
goto done;
|
|
error:
|
|
err = mpi_to_ltc_error(err);
|
|
__ERR:
|
|
mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL);
|
|
done:
|
|
mp_clear_multi(&tmp, &tmp2, NULL);
|
|
|
|
XFREE(buf);
|
|
return err;
|
|
}
|
|
|
|
#endif
|