154 lines
4.0 KiB
C
154 lines
4.0 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
#include "mycrypt.h"
|
|
|
|
/* PKCS #1 PSS Signature Padding -- Tom St Denis */
|
|
|
|
#ifdef PKCS_1
|
|
|
|
int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
|
|
unsigned long saltlen, prng_state *prng,
|
|
int prng_idx, int hash_idx,
|
|
unsigned long modulus_bitlen,
|
|
unsigned char *out, unsigned long *outlen)
|
|
{
|
|
unsigned char *DB, *mask, *salt, *hash;
|
|
unsigned long x, y, hLen, modulus_len;
|
|
int err;
|
|
hash_state md;
|
|
|
|
_ARGCHK(msghash != NULL);
|
|
_ARGCHK(out != NULL);
|
|
_ARGCHK(outlen != NULL);
|
|
|
|
/* ensure hash and PRNG are valid */
|
|
if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
hLen = hash_descriptor[hash_idx].hashsize;
|
|
modulus_len = (modulus_bitlen>>3) + (modulus_bitlen & 7 ? 1 : 0);
|
|
|
|
/* allocate ram for DB/mask/salt/hash of size modulus_len */
|
|
DB = XMALLOC(modulus_len);
|
|
mask = XMALLOC(modulus_len);
|
|
salt = XMALLOC(modulus_len);
|
|
hash = XMALLOC(modulus_len);
|
|
if (DB == NULL || mask == NULL || salt == NULL || hash == NULL) {
|
|
if (DB != NULL) {
|
|
XFREE(DB);
|
|
}
|
|
if (mask != NULL) {
|
|
XFREE(mask);
|
|
}
|
|
if (salt != NULL) {
|
|
XFREE(salt);
|
|
}
|
|
if (hash != NULL) {
|
|
XFREE(hash);
|
|
}
|
|
return CRYPT_MEM;
|
|
}
|
|
|
|
|
|
/* check sizes */
|
|
if ((saltlen > modulus_len) || (modulus_len < hLen + saltlen + 2)) {
|
|
err = CRYPT_INVALID_ARG;
|
|
goto __ERR;
|
|
}
|
|
|
|
/* generate random salt */
|
|
if (saltlen > 0) {
|
|
if (prng_descriptor[prng_idx].read(salt, saltlen, prng) != saltlen) {
|
|
err = CRYPT_ERROR_READPRNG;
|
|
goto __ERR;
|
|
}
|
|
}
|
|
|
|
/* M = (eight) 0x00 || msghash || salt, hash = H(M) */
|
|
hash_descriptor[hash_idx].init(&md);
|
|
zeromem(DB, 8);
|
|
if ((err = hash_descriptor[hash_idx].process(&md, DB, 8)) != CRYPT_OK) {
|
|
goto __ERR;
|
|
}
|
|
if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) {
|
|
goto __ERR;
|
|
}
|
|
if ((err = hash_descriptor[hash_idx].process(&md, salt, saltlen)) != CRYPT_OK) {
|
|
goto __ERR;
|
|
}
|
|
if ((err = hash_descriptor[hash_idx].done(&md, hash)) != CRYPT_OK) {
|
|
goto __ERR;
|
|
}
|
|
|
|
/* generate DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */
|
|
for (x = 0; x < (modulus_len - saltlen - hLen - 2); x++) {
|
|
DB[x] = 0x00;
|
|
}
|
|
DB[x++] = 0x01;
|
|
for (y = 0; y < saltlen; y++) {
|
|
DB[x++] = salt[y];
|
|
}
|
|
|
|
/* generate mask of length modulus_len - hLen - 1 from hash */
|
|
if ((err = pkcs_1_mgf1(hash, hLen, hash_idx, mask, modulus_len - hLen - 1)) != CRYPT_OK) {
|
|
goto __ERR;
|
|
}
|
|
|
|
/* xor against DB */
|
|
for (y = 0; y < (modulus_len - hLen - 1); y++) {
|
|
DB[y] ^= mask[y];
|
|
}
|
|
|
|
/* output is DB || hash || 0xBC */
|
|
if (*outlen < modulus_len) {
|
|
err = CRYPT_BUFFER_OVERFLOW;
|
|
goto __ERR;
|
|
}
|
|
|
|
/* DB */
|
|
for (y = x = 0; x < modulus_len - hLen - 1; x++) {
|
|
out[y++] = DB[x];
|
|
}
|
|
/* hash */
|
|
for (x = 0; x < hLen; x++) {
|
|
out[y++] = hash[x];
|
|
}
|
|
/* 0xBC */
|
|
out[y] = 0xBC;
|
|
|
|
/* now clear the 8*modulus_len - modulus_bitlen most significant bits */
|
|
out[0] &= 0xFF >> ((modulus_len<<3) - (modulus_bitlen-1));
|
|
|
|
/* store output size */
|
|
*outlen = modulus_len;
|
|
err = CRYPT_OK;
|
|
__ERR:
|
|
#ifdef CLEAN_STACK
|
|
zeromem(DB, modulus_len);
|
|
zeromem(mask, modulus_len);
|
|
zeromem(salt, modulus_len);
|
|
zeromem(hash, modulus_len);
|
|
#endif
|
|
|
|
XFREE(hash);
|
|
XFREE(salt);
|
|
XFREE(mask);
|
|
XFREE(DB);
|
|
|
|
return err;
|
|
}
|
|
|
|
#endif /* PKCS_1 */
|