310 lines
10 KiB
C
310 lines
10 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
/**********************************************************************\
|
|
* To commemorate the 1996 RSA Data Security Conference, the following *
|
|
* code is released into the public domain by its author. Prost! *
|
|
* *
|
|
* This cipher uses 16-bit words and little-endian byte ordering. *
|
|
* I wonder which processor it was optimized for? *
|
|
* *
|
|
* Thanks to CodeView, SoftIce, and D86 for helping bring this code to *
|
|
* the public. *
|
|
\**********************************************************************/
|
|
|
|
#include <mycrypt.h>
|
|
|
|
#ifdef RC2
|
|
|
|
const struct _cipher_descriptor rc2_desc = {
|
|
"rc2",
|
|
12, 8, 128, 8, 16,
|
|
&rc2_setup,
|
|
&rc2_ecb_encrypt,
|
|
&rc2_ecb_decrypt,
|
|
&rc2_test,
|
|
&rc2_keysize
|
|
};
|
|
|
|
/* 256-entry permutation table, probably derived somehow from pi */
|
|
static const unsigned char permute[256] = {
|
|
217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
|
|
198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
|
|
23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50,
|
|
189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
|
|
84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
|
|
18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
|
|
111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3,
|
|
248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215,
|
|
8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
|
|
150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236,
|
|
194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
|
|
153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49,
|
|
45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201,
|
|
211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169,
|
|
13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
|
|
197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
|
|
};
|
|
|
|
int rc2_setup(const unsigned char *key, int keylen, int rounds, symmetric_key *skey)
|
|
{
|
|
unsigned *xkey = skey->rc2.xkey;
|
|
unsigned char tmp[128];
|
|
unsigned T8, TM;
|
|
int i, bits;
|
|
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (keylen < 8 || keylen > 128) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
if (rounds != 0 && rounds != 16) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
for (i = 0; i < keylen; i++) {
|
|
tmp[i] = key[i] & 255;
|
|
}
|
|
|
|
/* Phase 1: Expand input key to 128 bytes */
|
|
if (keylen < 128) {
|
|
for (i = keylen; i < 128; i++) {
|
|
tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
|
|
}
|
|
}
|
|
|
|
/* Phase 2 - reduce effective key size to "bits" */
|
|
bits = keylen<<3;
|
|
T8 = (unsigned)(bits+7)>>3;
|
|
TM = (255 >> (unsigned)(7 & -bits));
|
|
tmp[128 - T8] = permute[tmp[128 - T8] & TM];
|
|
for (i = 127 - T8; i >= 0; i--) {
|
|
tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
|
|
}
|
|
|
|
/* Phase 3 - copy to xkey in little-endian order */
|
|
for (i = 0; i < 64; i++) {
|
|
xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
zeromem(tmp, sizeof(tmp));
|
|
#endif
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**********************************************************************\
|
|
* Encrypt an 8-byte block of plaintext using the given key. *
|
|
\**********************************************************************/
|
|
#ifdef CLEAN_STACK
|
|
static void _rc2_ecb_encrypt( const unsigned char *plain,
|
|
unsigned char *cipher,
|
|
symmetric_key *skey)
|
|
#else
|
|
void rc2_ecb_encrypt( const unsigned char *plain,
|
|
unsigned char *cipher,
|
|
symmetric_key *skey)
|
|
#endif
|
|
{
|
|
unsigned *xkey;
|
|
unsigned x76, x54, x32, x10, i;
|
|
|
|
_ARGCHK(plain != NULL);
|
|
_ARGCHK(cipher != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
xkey = skey->rc2.xkey;
|
|
|
|
x76 = ((unsigned)plain[7] << 8) + (unsigned)plain[6];
|
|
x54 = ((unsigned)plain[5] << 8) + (unsigned)plain[4];
|
|
x32 = ((unsigned)plain[3] << 8) + (unsigned)plain[2];
|
|
x10 = ((unsigned)plain[1] << 8) + (unsigned)plain[0];
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
|
|
x10 = ((x10 << 1) | (x10 >> 15));
|
|
|
|
x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
|
|
x32 = ((x32 << 2) | (x32 >> 14));
|
|
|
|
x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
|
|
x54 = ((x54 << 3) | (x54 >> 13));
|
|
|
|
x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
|
|
x76 = ((x76 << 5) | (x76 >> 11));
|
|
|
|
if (i == 4 || i == 10) {
|
|
x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
|
|
x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
|
|
x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
|
|
x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
|
|
}
|
|
}
|
|
|
|
cipher[0] = (unsigned char)x10;
|
|
cipher[1] = (unsigned char)(x10 >> 8);
|
|
cipher[2] = (unsigned char)x32;
|
|
cipher[3] = (unsigned char)(x32 >> 8);
|
|
cipher[4] = (unsigned char)x54;
|
|
cipher[5] = (unsigned char)(x54 >> 8);
|
|
cipher[6] = (unsigned char)x76;
|
|
cipher[7] = (unsigned char)(x76 >> 8);
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void rc2_ecb_encrypt( const unsigned char *plain,
|
|
unsigned char *cipher,
|
|
symmetric_key *skey)
|
|
{
|
|
_rc2_ecb_encrypt(plain, cipher, skey);
|
|
burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
|
|
}
|
|
#endif
|
|
|
|
/**********************************************************************\
|
|
* Decrypt an 8-byte block of ciphertext using the given key. *
|
|
\**********************************************************************/
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _rc2_ecb_decrypt( const unsigned char *cipher,
|
|
unsigned char *plain,
|
|
symmetric_key *skey)
|
|
#else
|
|
void rc2_ecb_decrypt( const unsigned char *cipher,
|
|
unsigned char *plain,
|
|
symmetric_key *skey)
|
|
#endif
|
|
{
|
|
unsigned x76, x54, x32, x10;
|
|
unsigned *xkey;
|
|
int i;
|
|
|
|
_ARGCHK(plain != NULL);
|
|
_ARGCHK(cipher != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
xkey = skey->rc2.xkey;
|
|
|
|
x76 = ((unsigned)cipher[7] << 8) + (unsigned)cipher[6];
|
|
x54 = ((unsigned)cipher[5] << 8) + (unsigned)cipher[4];
|
|
x32 = ((unsigned)cipher[3] << 8) + (unsigned)cipher[2];
|
|
x10 = ((unsigned)cipher[1] << 8) + (unsigned)cipher[0];
|
|
|
|
for (i = 15; i >= 0; i--) {
|
|
if (i == 4 || i == 10) {
|
|
x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
|
|
x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
|
|
x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
|
|
x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
|
|
}
|
|
|
|
x76 = ((x76 << 11) | (x76 >> 5));
|
|
x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;
|
|
|
|
x54 = ((x54 << 13) | (x54 >> 3));
|
|
x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;
|
|
|
|
x32 = ((x32 << 14) | (x32 >> 2));
|
|
x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;
|
|
|
|
x10 = ((x10 << 15) | (x10 >> 1));
|
|
x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
|
|
}
|
|
|
|
plain[0] = (unsigned char)x10;
|
|
plain[1] = (unsigned char)(x10 >> 8);
|
|
plain[2] = (unsigned char)x32;
|
|
plain[3] = (unsigned char)(x32 >> 8);
|
|
plain[4] = (unsigned char)x54;
|
|
plain[5] = (unsigned char)(x54 >> 8);
|
|
plain[6] = (unsigned char)x76;
|
|
plain[7] = (unsigned char)(x76 >> 8);
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void rc2_ecb_decrypt( const unsigned char *cipher,
|
|
unsigned char *plain,
|
|
symmetric_key *skey)
|
|
{
|
|
_rc2_ecb_decrypt(cipher, plain, skey);
|
|
burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
|
|
}
|
|
#endif
|
|
|
|
int rc2_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const struct {
|
|
int keylen;
|
|
unsigned char key[16], pt[8], ct[8];
|
|
} tests[] = {
|
|
|
|
{ 8,
|
|
{ 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
|
|
{ 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
|
|
|
|
},
|
|
{ 16,
|
|
{ 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
|
|
0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
|
|
}
|
|
};
|
|
int x, y, err;
|
|
symmetric_key skey;
|
|
unsigned char tmp[2][8];
|
|
|
|
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
|
|
zeromem(tmp, sizeof(tmp));
|
|
if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
|
|
rc2_ecb_decrypt(tmp[0], tmp[1], &skey);
|
|
|
|
if (memcmp(tmp[0], tests[x].ct, 8) != 0 || memcmp(tmp[1], tests[x].pt, 8) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 8; y++) tmp[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
|
|
for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
|
|
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
int rc2_keysize(int *keysize)
|
|
{
|
|
_ARGCHK(keysize != NULL);
|
|
if (*keysize < 8) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
} else if (*keysize > 128) {
|
|
*keysize = 128;
|
|
}
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|