374 lines
11 KiB
C
374 lines
11 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
|
|
/* Implementation of RIPEMD-128 based on the source by Antoon Bosselaers, ESAT-COSIC
|
|
*
|
|
* This source has been radically overhauled to be portable and work within
|
|
* the LibTomCrypt API by Tom St Denis
|
|
*/
|
|
#include "mycrypt.h"
|
|
|
|
#ifdef RIPEMD128
|
|
|
|
const struct _hash_descriptor rmd128_desc =
|
|
{
|
|
"rmd128",
|
|
8,
|
|
16,
|
|
64,
|
|
|
|
/* DER identifier (not supported) */
|
|
{ 0x00 },
|
|
0,
|
|
|
|
&rmd128_init,
|
|
&rmd128_process,
|
|
&rmd128_done,
|
|
&rmd128_test
|
|
};
|
|
|
|
/* the four basic functions F(), G() and H() */
|
|
#define F(x, y, z) ((x) ^ (y) ^ (z))
|
|
#define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
|
|
#define H(x, y, z) (((x) | ~(y)) ^ (z))
|
|
#define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
|
|
|
|
/* the eight basic operations FF() through III() */
|
|
#define FF(a, b, c, d, x, s) \
|
|
(a) += F((b), (c), (d)) + (x);\
|
|
(a) = ROL((a), (s));
|
|
|
|
#define GG(a, b, c, d, x, s) \
|
|
(a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
|
|
(a) = ROL((a), (s));
|
|
|
|
#define HH(a, b, c, d, x, s) \
|
|
(a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
|
|
(a) = ROL((a), (s));
|
|
|
|
#define II(a, b, c, d, x, s) \
|
|
(a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
|
|
(a) = ROL((a), (s));
|
|
|
|
#define FFF(a, b, c, d, x, s) \
|
|
(a) += F((b), (c), (d)) + (x);\
|
|
(a) = ROL((a), (s));
|
|
|
|
#define GGG(a, b, c, d, x, s) \
|
|
(a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\
|
|
(a) = ROL((a), (s));
|
|
|
|
#define HHH(a, b, c, d, x, s) \
|
|
(a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\
|
|
(a) = ROL((a), (s));
|
|
|
|
#define III(a, b, c, d, x, s) \
|
|
(a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\
|
|
(a) = ROL((a), (s));
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _rmd128_compress(hash_state *md, unsigned char *buf)
|
|
#else
|
|
static void rmd128_compress(hash_state *md, unsigned char *buf)
|
|
#endif
|
|
{
|
|
ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,X[16];
|
|
int i;
|
|
|
|
/* load words X */
|
|
for (i = 0; i < 16; i++){
|
|
LOAD32L(X[i], buf + (4 * i));
|
|
}
|
|
|
|
/* load state */
|
|
aa = aaa = md->rmd128.state[0];
|
|
bb = bbb = md->rmd128.state[1];
|
|
cc = ccc = md->rmd128.state[2];
|
|
dd = ddd = md->rmd128.state[3];
|
|
|
|
/* round 1 */
|
|
FF(aa, bb, cc, dd, X[ 0], 11);
|
|
FF(dd, aa, bb, cc, X[ 1], 14);
|
|
FF(cc, dd, aa, bb, X[ 2], 15);
|
|
FF(bb, cc, dd, aa, X[ 3], 12);
|
|
FF(aa, bb, cc, dd, X[ 4], 5);
|
|
FF(dd, aa, bb, cc, X[ 5], 8);
|
|
FF(cc, dd, aa, bb, X[ 6], 7);
|
|
FF(bb, cc, dd, aa, X[ 7], 9);
|
|
FF(aa, bb, cc, dd, X[ 8], 11);
|
|
FF(dd, aa, bb, cc, X[ 9], 13);
|
|
FF(cc, dd, aa, bb, X[10], 14);
|
|
FF(bb, cc, dd, aa, X[11], 15);
|
|
FF(aa, bb, cc, dd, X[12], 6);
|
|
FF(dd, aa, bb, cc, X[13], 7);
|
|
FF(cc, dd, aa, bb, X[14], 9);
|
|
FF(bb, cc, dd, aa, X[15], 8);
|
|
|
|
/* round 2 */
|
|
GG(aa, bb, cc, dd, X[ 7], 7);
|
|
GG(dd, aa, bb, cc, X[ 4], 6);
|
|
GG(cc, dd, aa, bb, X[13], 8);
|
|
GG(bb, cc, dd, aa, X[ 1], 13);
|
|
GG(aa, bb, cc, dd, X[10], 11);
|
|
GG(dd, aa, bb, cc, X[ 6], 9);
|
|
GG(cc, dd, aa, bb, X[15], 7);
|
|
GG(bb, cc, dd, aa, X[ 3], 15);
|
|
GG(aa, bb, cc, dd, X[12], 7);
|
|
GG(dd, aa, bb, cc, X[ 0], 12);
|
|
GG(cc, dd, aa, bb, X[ 9], 15);
|
|
GG(bb, cc, dd, aa, X[ 5], 9);
|
|
GG(aa, bb, cc, dd, X[ 2], 11);
|
|
GG(dd, aa, bb, cc, X[14], 7);
|
|
GG(cc, dd, aa, bb, X[11], 13);
|
|
GG(bb, cc, dd, aa, X[ 8], 12);
|
|
|
|
/* round 3 */
|
|
HH(aa, bb, cc, dd, X[ 3], 11);
|
|
HH(dd, aa, bb, cc, X[10], 13);
|
|
HH(cc, dd, aa, bb, X[14], 6);
|
|
HH(bb, cc, dd, aa, X[ 4], 7);
|
|
HH(aa, bb, cc, dd, X[ 9], 14);
|
|
HH(dd, aa, bb, cc, X[15], 9);
|
|
HH(cc, dd, aa, bb, X[ 8], 13);
|
|
HH(bb, cc, dd, aa, X[ 1], 15);
|
|
HH(aa, bb, cc, dd, X[ 2], 14);
|
|
HH(dd, aa, bb, cc, X[ 7], 8);
|
|
HH(cc, dd, aa, bb, X[ 0], 13);
|
|
HH(bb, cc, dd, aa, X[ 6], 6);
|
|
HH(aa, bb, cc, dd, X[13], 5);
|
|
HH(dd, aa, bb, cc, X[11], 12);
|
|
HH(cc, dd, aa, bb, X[ 5], 7);
|
|
HH(bb, cc, dd, aa, X[12], 5);
|
|
|
|
/* round 4 */
|
|
II(aa, bb, cc, dd, X[ 1], 11);
|
|
II(dd, aa, bb, cc, X[ 9], 12);
|
|
II(cc, dd, aa, bb, X[11], 14);
|
|
II(bb, cc, dd, aa, X[10], 15);
|
|
II(aa, bb, cc, dd, X[ 0], 14);
|
|
II(dd, aa, bb, cc, X[ 8], 15);
|
|
II(cc, dd, aa, bb, X[12], 9);
|
|
II(bb, cc, dd, aa, X[ 4], 8);
|
|
II(aa, bb, cc, dd, X[13], 9);
|
|
II(dd, aa, bb, cc, X[ 3], 14);
|
|
II(cc, dd, aa, bb, X[ 7], 5);
|
|
II(bb, cc, dd, aa, X[15], 6);
|
|
II(aa, bb, cc, dd, X[14], 8);
|
|
II(dd, aa, bb, cc, X[ 5], 6);
|
|
II(cc, dd, aa, bb, X[ 6], 5);
|
|
II(bb, cc, dd, aa, X[ 2], 12);
|
|
|
|
/* parallel round 1 */
|
|
III(aaa, bbb, ccc, ddd, X[ 5], 8);
|
|
III(ddd, aaa, bbb, ccc, X[14], 9);
|
|
III(ccc, ddd, aaa, bbb, X[ 7], 9);
|
|
III(bbb, ccc, ddd, aaa, X[ 0], 11);
|
|
III(aaa, bbb, ccc, ddd, X[ 9], 13);
|
|
III(ddd, aaa, bbb, ccc, X[ 2], 15);
|
|
III(ccc, ddd, aaa, bbb, X[11], 15);
|
|
III(bbb, ccc, ddd, aaa, X[ 4], 5);
|
|
III(aaa, bbb, ccc, ddd, X[13], 7);
|
|
III(ddd, aaa, bbb, ccc, X[ 6], 7);
|
|
III(ccc, ddd, aaa, bbb, X[15], 8);
|
|
III(bbb, ccc, ddd, aaa, X[ 8], 11);
|
|
III(aaa, bbb, ccc, ddd, X[ 1], 14);
|
|
III(ddd, aaa, bbb, ccc, X[10], 14);
|
|
III(ccc, ddd, aaa, bbb, X[ 3], 12);
|
|
III(bbb, ccc, ddd, aaa, X[12], 6);
|
|
|
|
/* parallel round 2 */
|
|
HHH(aaa, bbb, ccc, ddd, X[ 6], 9);
|
|
HHH(ddd, aaa, bbb, ccc, X[11], 13);
|
|
HHH(ccc, ddd, aaa, bbb, X[ 3], 15);
|
|
HHH(bbb, ccc, ddd, aaa, X[ 7], 7);
|
|
HHH(aaa, bbb, ccc, ddd, X[ 0], 12);
|
|
HHH(ddd, aaa, bbb, ccc, X[13], 8);
|
|
HHH(ccc, ddd, aaa, bbb, X[ 5], 9);
|
|
HHH(bbb, ccc, ddd, aaa, X[10], 11);
|
|
HHH(aaa, bbb, ccc, ddd, X[14], 7);
|
|
HHH(ddd, aaa, bbb, ccc, X[15], 7);
|
|
HHH(ccc, ddd, aaa, bbb, X[ 8], 12);
|
|
HHH(bbb, ccc, ddd, aaa, X[12], 7);
|
|
HHH(aaa, bbb, ccc, ddd, X[ 4], 6);
|
|
HHH(ddd, aaa, bbb, ccc, X[ 9], 15);
|
|
HHH(ccc, ddd, aaa, bbb, X[ 1], 13);
|
|
HHH(bbb, ccc, ddd, aaa, X[ 2], 11);
|
|
|
|
/* parallel round 3 */
|
|
GGG(aaa, bbb, ccc, ddd, X[15], 9);
|
|
GGG(ddd, aaa, bbb, ccc, X[ 5], 7);
|
|
GGG(ccc, ddd, aaa, bbb, X[ 1], 15);
|
|
GGG(bbb, ccc, ddd, aaa, X[ 3], 11);
|
|
GGG(aaa, bbb, ccc, ddd, X[ 7], 8);
|
|
GGG(ddd, aaa, bbb, ccc, X[14], 6);
|
|
GGG(ccc, ddd, aaa, bbb, X[ 6], 6);
|
|
GGG(bbb, ccc, ddd, aaa, X[ 9], 14);
|
|
GGG(aaa, bbb, ccc, ddd, X[11], 12);
|
|
GGG(ddd, aaa, bbb, ccc, X[ 8], 13);
|
|
GGG(ccc, ddd, aaa, bbb, X[12], 5);
|
|
GGG(bbb, ccc, ddd, aaa, X[ 2], 14);
|
|
GGG(aaa, bbb, ccc, ddd, X[10], 13);
|
|
GGG(ddd, aaa, bbb, ccc, X[ 0], 13);
|
|
GGG(ccc, ddd, aaa, bbb, X[ 4], 7);
|
|
GGG(bbb, ccc, ddd, aaa, X[13], 5);
|
|
|
|
/* parallel round 4 */
|
|
FFF(aaa, bbb, ccc, ddd, X[ 8], 15);
|
|
FFF(ddd, aaa, bbb, ccc, X[ 6], 5);
|
|
FFF(ccc, ddd, aaa, bbb, X[ 4], 8);
|
|
FFF(bbb, ccc, ddd, aaa, X[ 1], 11);
|
|
FFF(aaa, bbb, ccc, ddd, X[ 3], 14);
|
|
FFF(ddd, aaa, bbb, ccc, X[11], 14);
|
|
FFF(ccc, ddd, aaa, bbb, X[15], 6);
|
|
FFF(bbb, ccc, ddd, aaa, X[ 0], 14);
|
|
FFF(aaa, bbb, ccc, ddd, X[ 5], 6);
|
|
FFF(ddd, aaa, bbb, ccc, X[12], 9);
|
|
FFF(ccc, ddd, aaa, bbb, X[ 2], 12);
|
|
FFF(bbb, ccc, ddd, aaa, X[13], 9);
|
|
FFF(aaa, bbb, ccc, ddd, X[ 9], 12);
|
|
FFF(ddd, aaa, bbb, ccc, X[ 7], 5);
|
|
FFF(ccc, ddd, aaa, bbb, X[10], 15);
|
|
FFF(bbb, ccc, ddd, aaa, X[14], 8);
|
|
|
|
/* combine results */
|
|
ddd += cc + md->rmd128.state[1]; /* final result for MDbuf[0] */
|
|
md->rmd128.state[1] = md->rmd128.state[2] + dd + aaa;
|
|
md->rmd128.state[2] = md->rmd128.state[3] + aa + bbb;
|
|
md->rmd128.state[3] = md->rmd128.state[0] + bb + ccc;
|
|
md->rmd128.state[0] = ddd;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void rmd128_compress(hash_state *md, unsigned char *buf)
|
|
{
|
|
_rmd128_compress(md, buf);
|
|
burn_stack(sizeof(ulong32) * 24 + sizeof(int));
|
|
}
|
|
#endif
|
|
|
|
void rmd128_init(hash_state * md)
|
|
{
|
|
_ARGCHK(md != NULL);
|
|
md->rmd128.state[0] = 0x67452301UL;
|
|
md->rmd128.state[1] = 0xefcdab89UL;
|
|
md->rmd128.state[2] = 0x98badcfeUL;
|
|
md->rmd128.state[3] = 0x10325476UL;
|
|
md->rmd128.curlen = 0;
|
|
md->rmd128.length = 0;
|
|
}
|
|
|
|
HASH_PROCESS(rmd128_process, rmd128_compress, rmd128, 64)
|
|
|
|
int rmd128_done(hash_state * md, unsigned char *hash)
|
|
{
|
|
int i;
|
|
|
|
_ARGCHK(md != NULL);
|
|
_ARGCHK(hash != NULL);
|
|
|
|
if (md->rmd128.curlen >= sizeof(md->rmd128.buf)) {
|
|
return CRYPT_INVALID_ARG;
|
|
}
|
|
|
|
|
|
/* increase the length of the message */
|
|
md->rmd128.length += md->rmd128.curlen * 8;
|
|
|
|
/* append the '1' bit */
|
|
md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0x80;
|
|
|
|
/* if the length is currently above 56 bytes we append zeros
|
|
* then compress. Then we can fall back to padding zeros and length
|
|
* encoding like normal.
|
|
*/
|
|
if (md->rmd128.curlen > 56) {
|
|
while (md->rmd128.curlen < 64) {
|
|
md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
|
|
}
|
|
rmd128_compress(md, md->rmd128.buf);
|
|
md->rmd128.curlen = 0;
|
|
}
|
|
|
|
/* pad upto 56 bytes of zeroes */
|
|
while (md->rmd128.curlen < 56) {
|
|
md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
|
|
}
|
|
|
|
/* store length */
|
|
STORE64L(md->rmd128.length, md->rmd128.buf+56);
|
|
rmd128_compress(md, md->rmd128.buf);
|
|
|
|
/* copy output */
|
|
for (i = 0; i < 4; i++) {
|
|
STORE32L(md->rmd128.state[i], hash+(4*i));
|
|
}
|
|
#ifdef CLEAN_STACK
|
|
zeromem(md, sizeof(hash_state));
|
|
#endif
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
int rmd128_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const struct {
|
|
char *msg;
|
|
unsigned char md[16];
|
|
} tests[] = {
|
|
{ "",
|
|
{ 0xcd, 0xf2, 0x62, 0x13, 0xa1, 0x50, 0xdc, 0x3e,
|
|
0xcb, 0x61, 0x0f, 0x18, 0xf6, 0xb3, 0x8b, 0x46 }
|
|
},
|
|
{ "a",
|
|
{ 0x86, 0xbe, 0x7a, 0xfa, 0x33, 0x9d, 0x0f, 0xc7,
|
|
0xcf, 0xc7, 0x85, 0xe7, 0x2f, 0x57, 0x8d, 0x33 }
|
|
},
|
|
{ "abc",
|
|
{ 0xc1, 0x4a, 0x12, 0x19, 0x9c, 0x66, 0xe4, 0xba,
|
|
0x84, 0x63, 0x6b, 0x0f, 0x69, 0x14, 0x4c, 0x77 }
|
|
},
|
|
{ "message digest",
|
|
{ 0x9e, 0x32, 0x7b, 0x3d, 0x6e, 0x52, 0x30, 0x62,
|
|
0xaf, 0xc1, 0x13, 0x2d, 0x7d, 0xf9, 0xd1, 0xb8 }
|
|
},
|
|
{ "abcdefghijklmnopqrstuvwxyz",
|
|
{ 0xfd, 0x2a, 0xa6, 0x07, 0xf7, 0x1d, 0xc8, 0xf5,
|
|
0x10, 0x71, 0x49, 0x22, 0xb3, 0x71, 0x83, 0x4e }
|
|
},
|
|
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
|
|
{ 0xd1, 0xe9, 0x59, 0xeb, 0x17, 0x9c, 0x91, 0x1f,
|
|
0xae, 0xa4, 0x62, 0x4c, 0x60, 0xc5, 0xc7, 0x02 }
|
|
}
|
|
};
|
|
int x;
|
|
unsigned char buf[16];
|
|
hash_state md;
|
|
|
|
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
|
|
rmd128_init(&md);
|
|
rmd128_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg));
|
|
rmd128_done(&md, buf);
|
|
if (memcmp(buf, tests[x].md, 16) != 0) {
|
|
#if 0
|
|
printf("Failed test %d\n", x);
|
|
#endif
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
}
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|