469 lines
15 KiB
C
469 lines
15 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FILE: safer.c
|
|
*
|
|
* DESCRIPTION: block-cipher algorithm SAFER (Secure And Fast Encryption
|
|
* Routine) in its four versions: SAFER K-64, SAFER K-128,
|
|
* SAFER SK-64 and SAFER SK-128.
|
|
*
|
|
* AUTHOR: Richard De Moliner (demoliner@isi.ee.ethz.ch)
|
|
* Signal and Information Processing Laboratory
|
|
* Swiss Federal Institute of Technology
|
|
* CH-8092 Zuerich, Switzerland
|
|
*
|
|
* DATE: September 9, 1995
|
|
*
|
|
* CHANGE HISTORY:
|
|
*
|
|
*******************************************************************************/
|
|
|
|
#include <mycrypt.h>
|
|
|
|
#ifdef SAFER
|
|
|
|
const struct _cipher_descriptor
|
|
safer_k64_desc = {
|
|
"safer-k64",
|
|
8, 8, 8, 8, SAFER_K64_DEFAULT_NOF_ROUNDS,
|
|
&safer_k64_setup,
|
|
&safer_ecb_encrypt,
|
|
&safer_ecb_decrypt,
|
|
&safer_k64_test,
|
|
&safer_64_keysize
|
|
},
|
|
|
|
safer_sk64_desc = {
|
|
"safer-sk64",
|
|
9, 8, 8, 8, SAFER_SK64_DEFAULT_NOF_ROUNDS,
|
|
&safer_sk64_setup,
|
|
&safer_ecb_encrypt,
|
|
&safer_ecb_decrypt,
|
|
&safer_sk64_test,
|
|
&safer_64_keysize
|
|
},
|
|
|
|
safer_k128_desc = {
|
|
"safer-k128",
|
|
10, 16, 16, 8, SAFER_K128_DEFAULT_NOF_ROUNDS,
|
|
&safer_k128_setup,
|
|
&safer_ecb_encrypt,
|
|
&safer_ecb_decrypt,
|
|
&safer_sk128_test,
|
|
&safer_128_keysize
|
|
},
|
|
|
|
safer_sk128_desc = {
|
|
"safer-sk128",
|
|
11, 16, 16, 8, SAFER_SK128_DEFAULT_NOF_ROUNDS,
|
|
&safer_sk128_setup,
|
|
&safer_ecb_encrypt,
|
|
&safer_ecb_decrypt,
|
|
&safer_sk128_test,
|
|
&safer_128_keysize
|
|
};
|
|
|
|
/******************* Constants ************************************************/
|
|
// #define TAB_LEN 256
|
|
|
|
/******************* Assertions ***********************************************/
|
|
|
|
/******************* Macros ***************************************************/
|
|
#define ROL8(x, n) ((unsigned char)((unsigned int)(x) << (n)\
|
|
|(unsigned int)((x) & 0xFF) >> (8 - (n))))
|
|
#define EXP(x) safer_ebox[(x) & 0xFF]
|
|
#define LOG(x) safer_lbox[(x) & 0xFF]
|
|
#define PHT(x, y) { y += x; x += y; }
|
|
#define IPHT(x, y) { x -= y; y -= x; }
|
|
|
|
/******************* Types ****************************************************/
|
|
extern const unsigned char safer_ebox[], safer_lbox[];
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _Safer_Expand_Userkey(const unsigned char *userkey_1,
|
|
const unsigned char *userkey_2,
|
|
unsigned int nof_rounds,
|
|
int strengthened,
|
|
safer_key_t key)
|
|
#else
|
|
static void Safer_Expand_Userkey(const unsigned char *userkey_1,
|
|
const unsigned char *userkey_2,
|
|
unsigned int nof_rounds,
|
|
int strengthened,
|
|
safer_key_t key)
|
|
#endif
|
|
{ unsigned int i, j, k;
|
|
unsigned char ka[SAFER_BLOCK_LEN + 1];
|
|
unsigned char kb[SAFER_BLOCK_LEN + 1];
|
|
|
|
if (SAFER_MAX_NOF_ROUNDS < nof_rounds)
|
|
nof_rounds = SAFER_MAX_NOF_ROUNDS;
|
|
*key++ = (unsigned char)nof_rounds;
|
|
ka[SAFER_BLOCK_LEN] = (unsigned char)0;
|
|
kb[SAFER_BLOCK_LEN] = (unsigned char)0;
|
|
k = 0;
|
|
for (j = 0; j < SAFER_BLOCK_LEN; j++) {
|
|
ka[j] = ROL8(userkey_1[j], 5);
|
|
ka[SAFER_BLOCK_LEN] ^= ka[j];
|
|
kb[j] = *key++ = userkey_2[j];
|
|
kb[SAFER_BLOCK_LEN] ^= kb[j];
|
|
}
|
|
for (i = 1; i <= nof_rounds; i++) {
|
|
for (j = 0; j < SAFER_BLOCK_LEN + 1; j++) {
|
|
ka[j] = ROL8(ka[j], 6);
|
|
kb[j] = ROL8(kb[j], 6);
|
|
}
|
|
if (strengthened) {
|
|
k = 2 * i - 1;
|
|
while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
|
|
}
|
|
for (j = 0; j < SAFER_BLOCK_LEN; j++) {
|
|
if (strengthened) {
|
|
*key++ = (ka[k]
|
|
+ safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
|
|
if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
|
|
} else {
|
|
*key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
|
|
}
|
|
}
|
|
if (strengthened) {
|
|
k = 2 * i;
|
|
while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
|
|
}
|
|
for (j = 0; j < SAFER_BLOCK_LEN; j++) {
|
|
if (strengthened) {
|
|
*key++ = (kb[k]
|
|
+ safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
|
|
if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
|
|
} else {
|
|
*key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
zeromem(ka, sizeof(ka));
|
|
zeromem(kb, sizeof(kb));
|
|
#endif
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void Safer_Expand_Userkey(const unsigned char *userkey_1,
|
|
const unsigned char *userkey_2,
|
|
unsigned int nof_rounds,
|
|
int strengthened,
|
|
safer_key_t key)
|
|
{
|
|
_Safer_Expand_Userkey(userkey_1, userkey_2, nof_rounds, strengthened, key);
|
|
burn_stack(sizeof(unsigned char) * (2 * (SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2);
|
|
}
|
|
#endif
|
|
|
|
int safer_k64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
|
|
{
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
if (keylen != 8) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
int safer_sk64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
|
|
{
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
if (keylen != 8) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
int safer_k128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
|
|
{
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
if (keylen != 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
int safer_sk128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
|
|
{
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
if (keylen != 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0?numrounds:SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _safer_ecb_encrypt(const unsigned char *block_in,
|
|
unsigned char *block_out,
|
|
symmetric_key *skey)
|
|
#else
|
|
void safer_ecb_encrypt(const unsigned char *block_in,
|
|
unsigned char *block_out,
|
|
symmetric_key *skey)
|
|
#endif
|
|
{ unsigned char a, b, c, d, e, f, g, h, t;
|
|
unsigned int round;
|
|
unsigned char *key;
|
|
|
|
_ARGCHK(block_in != NULL);
|
|
_ARGCHK(block_out != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
key = skey->safer.key;
|
|
a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
|
|
e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
|
|
if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
|
|
while(round-- > 0)
|
|
{
|
|
a ^= *++key; b += *++key; c += *++key; d ^= *++key;
|
|
e ^= *++key; f += *++key; g += *++key; h ^= *++key;
|
|
a = EXP(a) + *++key; b = LOG(b) ^ *++key;
|
|
c = LOG(c) ^ *++key; d = EXP(d) + *++key;
|
|
e = EXP(e) + *++key; f = LOG(f) ^ *++key;
|
|
g = LOG(g) ^ *++key; h = EXP(h) + *++key;
|
|
PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h);
|
|
PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h);
|
|
PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h);
|
|
t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t;
|
|
}
|
|
a ^= *++key; b += *++key; c += *++key; d ^= *++key;
|
|
e ^= *++key; f += *++key; g += *++key; h ^= *++key;
|
|
block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
|
|
block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
|
|
block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
|
|
block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void safer_ecb_encrypt(const unsigned char *block_in,
|
|
unsigned char *block_out,
|
|
symmetric_key *skey)
|
|
{
|
|
_safer_ecb_encrypt(block_in, block_out, skey);
|
|
burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _safer_ecb_decrypt(const unsigned char *block_in,
|
|
unsigned char *block_out,
|
|
symmetric_key *skey)
|
|
#else
|
|
void safer_ecb_decrypt(const unsigned char *block_in,
|
|
unsigned char *block_out,
|
|
symmetric_key *skey)
|
|
#endif
|
|
{ unsigned char a, b, c, d, e, f, g, h, t;
|
|
unsigned int round;
|
|
unsigned char *key;
|
|
|
|
_ARGCHK(block_in != NULL);
|
|
_ARGCHK(block_out != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
key = skey->safer.key;
|
|
a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
|
|
e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
|
|
if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
|
|
key += SAFER_BLOCK_LEN * (1 + 2 * round);
|
|
h ^= *key; g -= *--key; f -= *--key; e ^= *--key;
|
|
d ^= *--key; c -= *--key; b -= *--key; a ^= *--key;
|
|
while (round--)
|
|
{
|
|
t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t;
|
|
IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h);
|
|
IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h);
|
|
IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h);
|
|
h -= *--key; g ^= *--key; f ^= *--key; e -= *--key;
|
|
d -= *--key; c ^= *--key; b ^= *--key; a -= *--key;
|
|
h = LOG(h) ^ *--key; g = EXP(g) - *--key;
|
|
f = EXP(f) - *--key; e = LOG(e) ^ *--key;
|
|
d = LOG(d) ^ *--key; c = EXP(c) - *--key;
|
|
b = EXP(b) - *--key; a = LOG(a) ^ *--key;
|
|
}
|
|
block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
|
|
block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
|
|
block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
|
|
block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void safer_ecb_decrypt(const unsigned char *block_in,
|
|
unsigned char *block_out,
|
|
symmetric_key *skey)
|
|
{
|
|
_safer_ecb_decrypt(block_in, block_out, skey);
|
|
burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
|
|
}
|
|
#endif
|
|
|
|
int safer_64_keysize(int *keysize)
|
|
{
|
|
_ARGCHK(keysize != NULL);
|
|
if (*keysize < 8) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
} else {
|
|
*keysize = 8;
|
|
return CRYPT_OK;
|
|
}
|
|
}
|
|
|
|
int safer_128_keysize(int *keysize)
|
|
{
|
|
_ARGCHK(keysize != NULL);
|
|
if (*keysize < 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
} else {
|
|
*keysize = 16;
|
|
return CRYPT_OK;
|
|
}
|
|
}
|
|
|
|
int safer_k64_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const unsigned char k64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
|
|
k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 },
|
|
k64_ct[] = { 200, 242, 156, 221, 135, 120, 62, 217 };
|
|
|
|
symmetric_key skey;
|
|
unsigned char buf[2][8];
|
|
int err;
|
|
|
|
/* test K64 */
|
|
if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
safer_ecb_encrypt(k64_pt, buf[0], &skey);
|
|
safer_ecb_decrypt(buf[0], buf[1], &skey);
|
|
|
|
if (memcmp(buf[0], k64_ct, 8) != 0 || memcmp(buf[1], k64_pt, 8) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
|
|
int safer_sk64_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const unsigned char sk64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
|
|
sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
|
|
sk64_ct[] = { 95, 206, 155, 162, 5, 132, 56, 199 };
|
|
|
|
symmetric_key skey;
|
|
unsigned char buf[2][8];
|
|
int err, y;
|
|
|
|
/* test SK64 */
|
|
if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
safer_ecb_encrypt(sk64_pt, buf[0], &skey);
|
|
safer_ecb_decrypt(buf[0], buf[1], &skey);
|
|
|
|
if (memcmp(buf[0], sk64_ct, 8) != 0 || memcmp(buf[1], sk64_pt, 8) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 8; y++) buf[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
|
|
for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
|
|
for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
int safer_sk128_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const unsigned char sk128_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
|
|
sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8,
|
|
0, 0, 0, 0, 0, 0, 0, 0 },
|
|
sk128_ct[] = { 255, 120, 17, 228, 179, 167, 46, 113 };
|
|
|
|
symmetric_key skey;
|
|
unsigned char buf[2][8];
|
|
int err, y;
|
|
|
|
/* test SK128 */
|
|
if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
safer_ecb_encrypt(sk128_pt, buf[0], &skey);
|
|
safer_ecb_decrypt(buf[0], buf[1], &skey);
|
|
|
|
if (memcmp(buf[0], sk128_ct, 8) != 0 || memcmp(buf[1], sk128_pt, 8) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 8; y++) buf[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
|
|
for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
|
|
for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|