tomcrypt/sha256.c
2010-06-16 12:38:16 +02:00

313 lines
11 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
*/
/* SHA256 by Tom St Denis */
#include "mycrypt.h"
#ifdef SHA256
const struct _hash_descriptor sha256_desc =
{
"sha256",
0,
32,
64,
/* DER identifier */
{ 0x30, 0x31, 0x30, 0x0D, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20 },
19,
&sha256_init,
&sha256_process,
&sha256_done,
&sha256_test
};
#ifdef SMALL_CODE
/* the K array */
static const unsigned long K[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
#endif
/* Various logical functions */
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) ROR((x),(n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
/* compress 512-bits */
#ifdef CLEAN_STACK
static void _sha256_compress(hash_state * md, unsigned char *buf)
#else
static void sha256_compress(hash_state * md, unsigned char *buf)
#endif
{
ulong32 S[8], W[64], t0, t1;
#ifdef SMALL_CODE
ulong32 t;
#endif
int i;
/* copy state into S */
for (i = 0; i < 8; i++) {
S[i] = md->sha256.state[i];
}
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32H(W[i], buf + (4*i));
}
/* fill W[16..63] */
for (i = 16; i < 64; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
}
/* Compress */
#ifdef SMALL_CODE
#define RND(a,b,c,d,e,f,g,h,i) \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
for (i = 0; i < 64; ++i) {
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
}
#else
#define RND(a,b,c,d,e,f,g,h,i,ki) \
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
#undef RND
#endif
/* feedback */
for (i = 0; i < 8; i++) {
md->sha256.state[i] = md->sha256.state[i] + S[i];
}
}
#ifdef CLEAN_STACK
static void sha256_compress(hash_state * md, unsigned char *buf)
{
_sha256_compress(md, buf);
burn_stack(sizeof(ulong32) * 74);
}
#endif
/* init the sha256 state */
void sha256_init(hash_state * md)
{
_ARGCHK(md != NULL);
md->sha256.curlen = 0;
md->sha256.length = 0;
md->sha256.state[0] = 0x6A09E667UL;
md->sha256.state[1] = 0xBB67AE85UL;
md->sha256.state[2] = 0x3C6EF372UL;
md->sha256.state[3] = 0xA54FF53AUL;
md->sha256.state[4] = 0x510E527FUL;
md->sha256.state[5] = 0x9B05688CUL;
md->sha256.state[6] = 0x1F83D9ABUL;
md->sha256.state[7] = 0x5BE0CD19UL;
}
HASH_PROCESS(sha256_process, sha256_compress, sha256, 64)
int sha256_done(hash_state * md, unsigned char *hash)
{
int i;
_ARGCHK(md != NULL);
_ARGCHK(hash != NULL);
if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->sha256.length += md->sha256.curlen * 8;
/* append the '1' bit */
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha256.curlen > 56) {
while (md->sha256.curlen < 64) {
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
}
sha256_compress(md, md->sha256.buf);
md->sha256.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->sha256.curlen < 56) {
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha256.length, md->sha256.buf+56);
sha256_compress(md, md->sha256.buf);
/* copy output */
for (i = 0; i < 8; i++) {
STORE32H(md->sha256.state[i], hash+(4*i));
}
#ifdef CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
int sha256_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
char *msg;
unsigned char hash[32];
} tests[] = {
{ "abc",
{ 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
},
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{ 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
},
};
int i;
unsigned char tmp[32];
hash_state md;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
sha256_init(&md);
sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
sha256_done(&md, tmp);
if (memcmp(tmp, tests[i].hash, 32) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#ifdef SHA224
#include "sha224.c"
#endif
#endif