291 lines
8.1 KiB
C
291 lines
8.1 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
|
|
/* Skipjack Implementation by Tom St Denis */
|
|
#include "mycrypt.h"
|
|
|
|
#ifdef SKIPJACK
|
|
|
|
const struct _cipher_descriptor skipjack_desc =
|
|
{
|
|
"skipjack",
|
|
17,
|
|
10, 10, 8, 32,
|
|
&skipjack_setup,
|
|
&skipjack_ecb_encrypt,
|
|
&skipjack_ecb_decrypt,
|
|
&skipjack_test,
|
|
&skipjack_keysize
|
|
};
|
|
|
|
static const unsigned char sbox[256] = {
|
|
0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
|
|
0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
|
|
0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
|
|
0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
|
|
0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
|
|
0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
|
|
0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
|
|
0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
|
|
0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
|
|
0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
|
|
0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
|
|
0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
|
|
0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
|
|
0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
|
|
0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
|
|
0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
|
|
};
|
|
|
|
/* simple x + 1 (mod 10) in one step. */
|
|
static const int keystep[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
|
|
|
|
/* simple x - 1 (mod 10) in one step */
|
|
static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
|
|
|
|
int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
|
|
{
|
|
int x;
|
|
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
if (keylen != 10) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
if (num_rounds != 32 && num_rounds != 0) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
/* make sure the key is in range for platforms where CHAR_BIT != 8 */
|
|
for (x = 0; x < 10; x++) {
|
|
skey->skipjack.key[x] = key[x] & 255;
|
|
}
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#define RULE_A \
|
|
tmp = g_func(w1, &kp, key->skipjack.key); \
|
|
w1 = tmp ^ w4 ^ x; \
|
|
w4 = w3; w3 = w2; \
|
|
w2 = tmp;
|
|
|
|
#define RULE_B \
|
|
tmp = g_func(w1, &kp, key->skipjack.key); \
|
|
tmp1 = w4; w4 = w3; \
|
|
w3 = w1 ^ w2 ^ x; \
|
|
w1 = tmp1; w2 = tmp;
|
|
|
|
#define RULE_A1 \
|
|
tmp = w1 ^ w2 ^ x; \
|
|
w1 = ig_func(w2, &kp, key->skipjack.key); \
|
|
w2 = w3; w3 = w4; w4 = tmp;
|
|
|
|
#define RULE_B1 \
|
|
tmp = ig_func(w2, &kp, key->skipjack.key); \
|
|
w2 = tmp ^ w3 ^ x; \
|
|
w3 = w4; w4 = w1; w1 = tmp;
|
|
|
|
static unsigned g_func(unsigned w, int *kp, unsigned char *key)
|
|
{
|
|
unsigned char g1,g2;
|
|
|
|
g1 = (w >> 8) & 255; g2 = w & 255;
|
|
g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
|
|
g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
|
|
g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
|
|
g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
|
|
return ((unsigned)g1<<8)|(unsigned)g2;
|
|
}
|
|
|
|
static unsigned ig_func(unsigned w, int *kp, unsigned char *key)
|
|
{
|
|
unsigned char g1,g2;
|
|
|
|
g1 = (w >> 8) & 255; g2 = w & 255;
|
|
*kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
|
|
*kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
|
|
*kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
|
|
*kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
|
|
return ((unsigned)g1<<8)|(unsigned)g2;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
|
|
#else
|
|
void skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
|
|
#endif
|
|
{
|
|
unsigned w1,w2,w3,w4,tmp,tmp1;
|
|
int x, kp;
|
|
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
_ARGCHK(key != NULL);
|
|
|
|
/* load block */
|
|
w1 = ((unsigned)pt[0]<<8)|pt[1];
|
|
w2 = ((unsigned)pt[2]<<8)|pt[3];
|
|
w3 = ((unsigned)pt[4]<<8)|pt[5];
|
|
w4 = ((unsigned)pt[6]<<8)|pt[7];
|
|
|
|
/* 8 rounds of RULE A */
|
|
for (x = 1, kp = 0; x < 9; x++) {
|
|
RULE_A;
|
|
}
|
|
|
|
/* 8 rounds of RULE B */
|
|
for (; x < 17; x++) {
|
|
RULE_B;
|
|
}
|
|
|
|
/* 8 rounds of RULE A */
|
|
for (; x < 25; x++) {
|
|
RULE_A;
|
|
}
|
|
|
|
/* 8 rounds of RULE B */
|
|
for (; x < 33; x++) {
|
|
RULE_B;
|
|
}
|
|
|
|
/* store block */
|
|
ct[0] = (w1>>8)&255; ct[1] = w1&255;
|
|
ct[2] = (w2>>8)&255; ct[3] = w2&255;
|
|
ct[4] = (w3>>8)&255; ct[5] = w3&255;
|
|
ct[6] = (w4>>8)&255; ct[7] = w4&255;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
|
|
{
|
|
_skipjack_ecb_encrypt(pt, ct, key);
|
|
burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
|
|
#else
|
|
void skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
|
|
#endif
|
|
{
|
|
unsigned w1,w2,w3,w4,tmp;
|
|
int x, kp;
|
|
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
_ARGCHK(key != NULL);
|
|
|
|
/* load block */
|
|
w1 = ((unsigned)ct[0]<<8)|ct[1];
|
|
w2 = ((unsigned)ct[2]<<8)|ct[3];
|
|
w3 = ((unsigned)ct[4]<<8)|ct[5];
|
|
w4 = ((unsigned)ct[6]<<8)|ct[7];
|
|
|
|
/* 8 rounds of RULE B^-1
|
|
|
|
Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
|
|
*/
|
|
for (x = 32, kp = 8; x > 24; x--) {
|
|
RULE_B1;
|
|
}
|
|
|
|
/* 8 rounds of RULE A^-1 */
|
|
for (; x > 16; x--) {
|
|
RULE_A1;
|
|
}
|
|
|
|
|
|
/* 8 rounds of RULE B^-1 */
|
|
for (; x > 8; x--) {
|
|
RULE_B1;
|
|
}
|
|
|
|
/* 8 rounds of RULE A^-1 */
|
|
for (; x > 0; x--) {
|
|
RULE_A1;
|
|
}
|
|
|
|
/* store block */
|
|
pt[0] = (w1>>8)&255; pt[1] = w1&255;
|
|
pt[2] = (w2>>8)&255; pt[3] = w2&255;
|
|
pt[4] = (w3>>8)&255; pt[5] = w3&255;
|
|
pt[6] = (w4>>8)&255; pt[7] = w4&255;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
void skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
|
|
{
|
|
_skipjack_ecb_decrypt(ct, pt, key);
|
|
burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
|
|
}
|
|
#endif
|
|
|
|
int skipjack_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const struct {
|
|
unsigned char key[10], pt[8], ct[8];
|
|
} tests[] = {
|
|
{
|
|
{ 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
|
|
{ 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
|
|
{ 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
|
|
}
|
|
};
|
|
unsigned char buf[2][8];
|
|
int x, y, err;
|
|
symmetric_key key;
|
|
|
|
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
|
|
/* setup key */
|
|
if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
/* encrypt and decrypt */
|
|
skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
|
|
skipjack_ecb_decrypt(buf[0], buf[1], &key);
|
|
|
|
/* compare */
|
|
if (memcmp(buf[0], tests[x].ct, 8) != 0 || memcmp(buf[1], tests[x].pt, 8) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 8; y++) buf[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
|
|
for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
|
|
for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
int skipjack_keysize(int *desired_keysize)
|
|
{
|
|
_ARGCHK(desired_keysize != NULL);
|
|
if (*desired_keysize < 10) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
} else if (*desired_keysize > 10) {
|
|
*desired_keysize = 10;
|
|
}
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#endif
|