170 lines
4.5 KiB
C
170 lines
4.5 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
|
|
*/
|
|
|
|
#include "mycrypt.h"
|
|
|
|
#ifdef XTEA
|
|
|
|
const struct _cipher_descriptor xtea_desc =
|
|
{
|
|
"xtea",
|
|
1,
|
|
16, 16, 8, 32,
|
|
&xtea_setup,
|
|
&xtea_ecb_encrypt,
|
|
&xtea_ecb_decrypt,
|
|
&xtea_test,
|
|
&xtea_keysize
|
|
};
|
|
|
|
int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
|
|
{
|
|
unsigned long x, sum, K[4];
|
|
|
|
_ARGCHK(key != NULL);
|
|
_ARGCHK(skey != NULL);
|
|
|
|
/* check arguments */
|
|
if (keylen != 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
if (num_rounds != 0 && num_rounds != 32) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
/* load key */
|
|
LOAD32L(K[0], key+0);
|
|
LOAD32L(K[1], key+4);
|
|
LOAD32L(K[2], key+8);
|
|
LOAD32L(K[3], key+12);
|
|
|
|
for (x = sum = 0; x < 32; x++) {
|
|
skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL;
|
|
sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL;
|
|
skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
zeromem(&K, sizeof(K));
|
|
#endif
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
void xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
|
|
{
|
|
unsigned long y, z;
|
|
int r;
|
|
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
_ARGCHK(key != NULL);
|
|
|
|
LOAD32L(y, &pt[0]);
|
|
LOAD32L(z, &pt[4]);
|
|
for (r = 0; r < 32; r += 4) {
|
|
y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r])) & 0xFFFFFFFFUL;
|
|
z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r])) & 0xFFFFFFFFUL;
|
|
|
|
y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+1])) & 0xFFFFFFFFUL;
|
|
z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+1])) & 0xFFFFFFFFUL;
|
|
|
|
y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+2])) & 0xFFFFFFFFUL;
|
|
z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+2])) & 0xFFFFFFFFUL;
|
|
|
|
y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+3])) & 0xFFFFFFFFUL;
|
|
z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+3])) & 0xFFFFFFFFUL;
|
|
}
|
|
STORE32L(y, &ct[0]);
|
|
STORE32L(z, &ct[4]);
|
|
}
|
|
|
|
void xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
|
|
{
|
|
unsigned long y, z;
|
|
int r;
|
|
|
|
_ARGCHK(pt != NULL);
|
|
_ARGCHK(ct != NULL);
|
|
_ARGCHK(key != NULL);
|
|
|
|
LOAD32L(y, &ct[0]);
|
|
LOAD32L(z, &ct[4]);
|
|
for (r = 31; r >= 0; r -= 4) {
|
|
z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r])) & 0xFFFFFFFFUL;
|
|
y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r])) & 0xFFFFFFFFUL;
|
|
|
|
z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-1])) & 0xFFFFFFFFUL;
|
|
y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-1])) & 0xFFFFFFFFUL;
|
|
|
|
z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-2])) & 0xFFFFFFFFUL;
|
|
y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-2])) & 0xFFFFFFFFUL;
|
|
|
|
z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-3])) & 0xFFFFFFFFUL;
|
|
y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-3])) & 0xFFFFFFFFUL;
|
|
}
|
|
STORE32L(y, &pt[0]);
|
|
STORE32L(z, &pt[4]);
|
|
}
|
|
|
|
int xtea_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const unsigned char key[16] =
|
|
{ 0x78, 0x56, 0x34, 0x12, 0xf0, 0xcd, 0xcb, 0x9a,
|
|
0x48, 0x37, 0x26, 0x15, 0xc0, 0xbf, 0xae, 0x9d };
|
|
static const unsigned char pt[8] =
|
|
{ 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 };
|
|
static const unsigned char ct[8] =
|
|
{ 0x75, 0xd7, 0xc5, 0xbf, 0xcf, 0x58, 0xc9, 0x3f };
|
|
unsigned char tmp[2][8];
|
|
symmetric_key skey;
|
|
int err, y;
|
|
|
|
if ((err = xtea_setup(key, 16, 0, &skey)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
xtea_ecb_encrypt(pt, tmp[0], &skey);
|
|
xtea_ecb_decrypt(tmp[0], tmp[1], &skey);
|
|
|
|
if (memcmp(tmp[0], ct, 8) != 0 || memcmp(tmp[1], pt, 8) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 8; y++) tmp[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey);
|
|
for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey);
|
|
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
int xtea_keysize(int *desired_keysize)
|
|
{
|
|
_ARGCHK(desired_keysize != NULL);
|
|
if (*desired_keysize < 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
*desired_keysize = 16;
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|