The plugin will be built only if the [HackRF host library](https://github.com/mossmann/hackrf) is installed in your system. If you build it from source and install it in a custom location say: `/opt/install/libhackrf` you will have to add `-DHACKRF_DIR=/opt/install/libhackrf` to the cmake command line.
- Magenta (or pink) square icon: an error occurred. In the case the device was accidentally disconnected you may click on the icon, plug back in and start again.
If you have the Rx open in another tab and it is running then it will be stopped automatically before the Tx starts. In a similar manner the Tx will be stopped before the Rx is started from the Rx tab.
This is the baseband sample rate in kS/s before interpolation (5) to produce the final stream that is sent to the HackRF device. Thus this is the device sample rate (8) divided by the interpolation factor (5).
Transmission latency depends essentially in the delay in the sample FIFO. The size of sample FIFO is calculated to give a fixed delay of 250 ms or 150000 samples whichever is bigger. Below is the delay in seconds vs baseband sample rate in kS/s from 48 to 800 kS/s. The 250 ms delay is reached at 600 kS/s:
The main samples buffer is based on the baseband sample rate and will introduce ~500ms delay for interpolation by 16 or lower and ~1s for interpolation by 32.
Use the wheels to adjust the sample rate. Left click on a digit sets the cursor position at this digit. Right click on a digit sets all digits on the right to zero. This effectively floors value at the digit position. Wheels are moved with the mousewheel while pointing at the wheel or by selecting the wheel with the left mouse click and using the keyboard arrows. Pressing shift simultaneously moves digit by 5 and pressing control moves it by 2.