This input sample source plugin gets its samples from a [BladeRF1 device](https://www.nuand.com/bladerf-1) using LibbladeRF v.2. This is available in Linux distributions only.
The plugin will be built only if the [BladeRF host library](https://github.com/Nuand/bladeRF) is installed in your system. If you build it from source and install it in a custom location say: `/opt/install/libbladeRF` you will have to add `-DBLADERF_INCLUDE_DIR=/opt/install/libbladeRF` to the cmake command line.
Note that libbladeRF v2 with git tag 2018.08 should be used (official release). The FPGA image v0.7.3 should be used accordingly. The FPGA .rbf file should be copied to the folder where the `sdrangel` binary resides. You can download FPGA images from [here](https://www.nuand.com/fpga_images/)
- Magenta (or pink) square icon: an error occurred. In the case the device was accidentally disconnected you may click on the icon, plug back in and start again.
This controls the optional XB-200 add-on when it is fitted to the BladeRF main board. These controls have no effect if the XB-200 board is absent. Options are:
- **None**: XB-200 is ignored
- **Bypass**: XB-200 is passed through
- **Auto 1dB**: The 50, 144 and 220 MHz filters are switched on automatically according to the frequency of reception when it is within the -1 dB passband of the filters
- **Auto 3dB**: The 50, 144 and 220 MHz filters are switched on automatically according to the frequency of reception when it is within the -3 dB passband of the filters
- **Custom**: The signal is routed through a custom filter
- **50M**: The signal is routed through the 50 MHz filter
- **144M**: The signal is routed through the 144 MHz filter
- **222M**: The signal is routed through the 222 MHz filter
Use the wheels to adjust the sample rate. Left click on a digit sets the cursor position at this digit. Right click on a digit sets all digits on the right to zero. This effectively floors value at the digit position. Wheels are moved with the mousewheel while pointing at the wheel or by selecting the wheel with the left mouse click and using the keyboard arrows. Pressing shift simultaneously moves digit by 5 and pressing control moves it by 2.
The I/Q stream from the BladeRF ADC is downsampled by a power of two before being sent to the passband. Possible values are increasing powers of two: 1 (no decimation), 2, 4, 8, 16, 32, 64.
- **Cen**: the decimation operation takes place around the BladeRF Rx center frequency Fs
- **Inf**: the decimation operation takes place around Fs - Fc.
- **Sup**: the decimation operation takes place around Fs + Fc.
With SR as the sample rate before decimation Fc is calculated as:
- if decimation n is 4 or lower: Fc = SR/2^(log2(n)-1). The device center frequency is on the side of the baseband. You need a RF filter bandwidth at least twice the baseband.
- if decimation n is 8 or higher: Fc = SR/n. The device center frequency is half the baseband away from the side of the baseband. You need a RF filter bandwidth at least 3 times the baseband.
This is the Rx filter bandwidth in kHz in the LMS6002D device. Possible values are: 1500, 1750, 2500, 2750, 3000, 3840, 5000, 5500, 6000, 7000, 8750, 10000, 12000, 14000, 20000, 28000 kHz.
The VGA1 gain can be adjusted from 5 dB to 30 dB in 1 dB steps. The VGA1 is inside the LMS6002D chip and is placed between the RF mixer and the baseband filter.
The VGA2 gain can be adjusted from 0 dB to 30 dB in 3 dB steps. The VGA2 is inside the LMS6002D chip and is placed between the baseband filter and the ADC.