1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-04 16:01:14 -05:00
sdrangel/plugins/channelrx/chanalyzer/chanalyzer.cpp

381 lines
13 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include "device/devicesourceapi.h"
#include "audio/audiooutput.h"
#include "dsp/threadedbasebandsamplesink.h"
#include "dsp/downchannelizer.h"
#include "chanalyzer.h"
MESSAGE_CLASS_DEFINITION(ChannelAnalyzer::MsgConfigureChannelAnalyzer, Message)
MESSAGE_CLASS_DEFINITION(ChannelAnalyzer::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(ChannelAnalyzer::MsgReportChannelSampleRateChanged, Message)
const QString ChannelAnalyzer::m_channelIdURI = "sdrangel.channel.chanalyzer";
const QString ChannelAnalyzer::m_channelId = "ChannelAnalyzer";
ChannelAnalyzer::ChannelAnalyzer(DeviceSourceAPI *deviceAPI) :
ChannelSinkAPI(m_channelIdURI),
m_deviceAPI(deviceAPI),
m_sampleSink(0),
m_settingsMutex(QMutex::Recursive)
{
setObjectName(m_channelId);
m_undersampleCount = 0;
m_sum = 0;
m_usb = true;
m_magsq = 0;
m_useInterpolator = false;
m_interpolatorDistance = 1.0f;
m_interpolatorDistanceRemain = 0.0f;
2018-05-19 19:10:08 -04:00
m_inputSampleRate = 48000;
m_inputFrequencyOffset = 0;
SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_inputSampleRate, m_settings.m_bandwidth / m_inputSampleRate, ssbFftLen);
DSBFilter = new fftfilt(m_settings.m_bandwidth / m_inputSampleRate, 2*ssbFftLen);
RRCFilter = new fftfilt(m_settings.m_bandwidth / m_inputSampleRate, 2*ssbFftLen);
m_corr = new fftcorr(8*ssbFftLen); // 8k for 4k effective samples
m_pll.computeCoefficients(0.002f, 0.5f, 10.0f); // bandwidth, damping factor, loop gain
2018-05-19 19:10:08 -04:00
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
applySettings(m_settings, true);
m_channelizer = new DownChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this);
m_deviceAPI->addThreadedSink(m_threadedChannelizer);
m_deviceAPI->addChannelAPI(this);
}
ChannelAnalyzer::~ChannelAnalyzer()
{
m_deviceAPI->removeChannelAPI(this);
m_deviceAPI->removeThreadedSink(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
delete SSBFilter;
delete DSBFilter;
delete RRCFilter;
}
void ChannelAnalyzer::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly)
{
(void) positiveOnly;
fftfilt::cmplx *sideband = 0;
Complex ci;
m_settingsMutex.lock();
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_useInterpolator)
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci, sideband);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
processOneSample(c, sideband);
}
}
if(m_sampleSink != 0)
{
2018-05-19 19:10:08 -04:00
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_settings.m_ssb); // m_ssb = positive only
}
m_sampleBuffer.clear();
m_settingsMutex.unlock();
}
void ChannelAnalyzer::processOneSample(Complex& c, fftfilt::cmplx *sideband)
2018-05-19 19:10:08 -04:00
{
int n_out;
int decim = 1<<m_settings.m_spanLog2;
if (m_settings.m_ssb)
{
2018-05-19 19:10:08 -04:00
n_out = SSBFilter->runSSB(c, &sideband, m_usb);
}
else
{
if (m_settings.m_rrc) {
n_out = RRCFilter->runFilt(c, &sideband);
} else {
n_out = DSBFilter->runDSB(c, &sideband);
}
2018-05-19 19:10:08 -04:00
}
for (int i = 0; i < n_out; i++)
{
// Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display
// smart decimation with bit gain using float arithmetic (23 bits significand)
m_sum += sideband[i];
if (!(m_undersampleCount++ & (decim - 1))) // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
{
m_sum /= decim;
Real re = m_sum.real() / SDR_RX_SCALEF;
Real im = m_sum.imag() / SDR_RX_SCALEF;
2018-05-19 19:10:08 -04:00
m_magsq = re*re + im*im;
m_channelPowerAvg(m_magsq);
std::complex<float> mix;
2018-05-19 19:10:08 -04:00
if (m_settings.m_pll)
{
if (m_settings.m_fll)
{
m_fll.feed(re, im);
// Use -fPLL to mix (exchange PLL real and image in the complex multiplication)
mix = m_sum * std::conj(m_fll.getComplex());
2018-05-19 19:10:08 -04:00
}
else
{
m_pll.feed(re, im);
// Use -fPLL to mix (exchange PLL real and image in the complex multiplication)
mix = m_sum * std::conj(m_pll.getComplex());
2018-05-19 19:10:08 -04:00
}
}
feedOneSample(m_settings.m_pll ? mix : m_sum, m_settings.m_fll ? m_fll.getComplex() : m_pll.getComplex());
2018-05-19 19:10:08 -04:00
m_sum = 0;
}
}
}
void ChannelAnalyzer::start()
{
2018-05-19 19:10:08 -04:00
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
}
void ChannelAnalyzer::stop()
{
}
bool ChannelAnalyzer::handleMessage(const Message& cmd)
{
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd;
qDebug() << "ChannelAnalyzer::handleMessage: DownChannelizer::MsgChannelizerNotification:"
2018-05-19 19:10:08 -04:00
<< " sampleRate: " << notif.getSampleRate()
<< " frequencyOffset: " << notif.getFrequencyOffset();
2018-05-19 19:10:08 -04:00
applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset());
if (getMessageQueueToGUI())
{
MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create();
getMessageQueueToGUI()->push(msg);
}
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
qDebug() << "ChannelAnalyzer::handleMessage: MsgConfigureChannelizer:"
2018-05-19 19:10:08 -04:00
<< " sampleRate: " << cfg.getSampleRate()
<< " centerFrequency: " << cfg.getCenterFrequency();
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
2018-05-19 19:10:08 -04:00
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
else if (MsgConfigureChannelAnalyzer::match(cmd))
{
qDebug("ChannelAnalyzer::handleMessage: MsgConfigureChannelAnalyzer");
2018-05-19 19:10:08 -04:00
MsgConfigureChannelAnalyzer& cfg = (MsgConfigureChannelAnalyzer&) cmd;
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else
{
// Processed through GUI
// if (m_sampleSink != 0)
// {
// return m_sampleSink->handleMessage(cmd);
// }
// else
// {
// return false;
// }
return false;
}
}
void ChannelAnalyzer::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force)
2018-05-18 23:03:56 -04:00
{
qDebug() << "ChannelAnalyzer::applyChannelSettings:"
2018-05-18 23:03:56 -04:00
<< " inputSampleRate: " << inputSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
if ((m_inputFrequencyOffset != inputFrequencyOffset) ||
(m_inputSampleRate != inputSampleRate) || force)
{
m_nco.setFreq(-inputFrequencyOffset, inputSampleRate);
}
if ((m_inputSampleRate != inputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, inputSampleRate, inputSampleRate / 2.2f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_downSampleRate;
if (!m_settings.m_downSample)
{
setFilters(inputSampleRate, m_settings.m_bandwidth, m_settings.m_lowCutoff);
m_pll.setSampleRate(inputSampleRate / (1<<m_settings.m_spanLog2));
m_fll.setSampleRate(inputSampleRate / (1<<m_settings.m_spanLog2));
}
m_settingsMutex.unlock();
}
m_inputSampleRate = inputSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
}
void ChannelAnalyzer::setFilters(int sampleRate, float bandwidth, float lowCutoff)
2018-05-18 23:03:56 -04:00
{
qDebug("ChannelAnalyzer::setFilters: sampleRate: %d bandwidth: %f lowCutoff: %f",
2018-05-19 19:10:08 -04:00
sampleRate, bandwidth, lowCutoff);
2018-05-18 23:03:56 -04:00
if (bandwidth < 0)
{
bandwidth = -bandwidth;
lowCutoff = -lowCutoff;
m_usb = false;
}
else
{
m_usb = true;
}
if (bandwidth < 100.0f)
{
bandwidth = 100.0f;
lowCutoff = 0;
}
SSBFilter->create_filter(lowCutoff / sampleRate, bandwidth / sampleRate);
DSBFilter->create_dsb_filter(bandwidth / sampleRate);
RRCFilter->create_rrc_filter(bandwidth / sampleRate, m_settings.m_rrcRolloff / 100.0);
2018-05-18 23:03:56 -04:00
}
void ChannelAnalyzer::applySettings(const ChannelAnalyzerSettings& settings, bool force)
2018-05-18 23:03:56 -04:00
{
qDebug() << "ChannelAnalyzer::applySettings:"
2018-05-19 19:10:08 -04:00
<< " m_downSample: " << settings.m_downSample
<< " m_downSampleRate: " << settings.m_downSampleRate
<< " m_rcc: " << settings.m_rrc
<< " m_rrcRolloff: " << settings.m_rrcRolloff / 100.0
2018-05-19 19:10:08 -04:00
<< " m_bandwidth: " << settings.m_bandwidth
<< " m_lowCutoff: " << settings.m_lowCutoff
<< " m_spanLog2: " << settings.m_spanLog2
<< " m_ssb: " << settings.m_ssb
<< " m_pll: " << settings.m_pll
<< " m_fll: " << settings.m_fll
<< " m_pllPskOrder: " << settings.m_pllPskOrder
<< " m_inputType: " << (int) settings.m_inputType;
2018-05-19 19:10:08 -04:00
2018-05-18 23:03:56 -04:00
if ((settings.m_downSampleRate != m_settings.m_downSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, m_inputSampleRate, m_inputSampleRate / 2.2);
m_interpolatorDistanceRemain = 0.0f;
m_interpolatorDistance = (Real) m_inputSampleRate / (Real) settings.m_downSampleRate;
m_settingsMutex.unlock();
}
if ((settings.m_downSample != m_settings.m_downSample) || force)
{
int sampleRate = settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate;
2018-05-18 23:03:56 -04:00
m_settingsMutex.lock();
m_useInterpolator = settings.m_downSample;
setFilters(sampleRate, settings.m_bandwidth, settings.m_lowCutoff);
m_pll.setSampleRate(sampleRate / (1<<settings.m_spanLog2));
m_fll.setSampleRate(sampleRate / (1<<settings.m_spanLog2));
2018-05-18 23:03:56 -04:00
m_settingsMutex.unlock();
}
if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff)|| force)
{
m_settingsMutex.lock();
setFilters(settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate, settings.m_bandwidth, settings.m_lowCutoff);
m_settingsMutex.unlock();
}
if ((settings.m_rrcRolloff != m_settings.m_rrcRolloff) || force)
{
float sampleRate = settings.m_downSample ? (float) settings.m_downSampleRate : (float) m_inputSampleRate;
m_settingsMutex.lock();
RRCFilter->create_rrc_filter(settings.m_bandwidth / sampleRate, settings.m_rrcRolloff / 100.0);
m_settingsMutex.unlock();
}
2018-05-18 23:03:56 -04:00
if ((settings.m_spanLog2 != m_settings.m_spanLog2) || force)
{
2018-05-19 19:10:08 -04:00
int sampleRate = (settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate) / (1<<m_settings.m_spanLog2);
2018-05-18 23:03:56 -04:00
m_pll.setSampleRate(sampleRate);
m_fll.setSampleRate(sampleRate);
}
if (settings.m_pll != m_settings.m_pll || force)
{
if (settings.m_pll)
{
m_pll.reset();
m_fll.reset();
}
}
if (settings.m_fll != m_settings.m_fll || force)
{
if (settings.m_fll) {
m_fll.reset();
}
}
if (settings.m_pllPskOrder != m_settings.m_pllPskOrder || force)
{
if (settings.m_pllPskOrder < 32) {
m_pll.setPskOrder(settings.m_pllPskOrder);
}
}
m_settings = settings;
}