1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-14 12:22:00 -05:00
sdrangel/plugins/channelrx/demodatv/atvdemodsink.h

319 lines
11 KiB
C
Raw Normal View History

2019-12-01 09:13:35 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019-2022 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Vort <vvort@yandex.ru> //
2019-12-01 09:13:35 -05:00
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_ATVDEMODSINK_H
#define INCLUDE_ATVDEMODSINK_H
#include <QElapsedTimer>
#include <vector>
2020-08-04 10:02:06 -04:00
#include <memory>
2019-12-01 09:13:35 -05:00
#include "dsp/channelsamplesink.h"
#include "dsp/nco.h"
#include "dsp/fftfilt.h"
#include "dsp/phaselock.h"
#include "dsp/recursivefilters.h"
#include "dsp/phasediscri.h"
#include "util/movingaverage.h"
#include "gui/tvscreenanalog.h"
2019-12-01 09:13:35 -05:00
#include "atvdemodsettings.h"
class ScopeVis;
2019-12-01 09:13:35 -05:00
class ATVDemodSink : public ChannelSampleSink {
public:
ATVDemodSink();
~ATVDemodSink();
virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end);
void setScopeSink(ScopeVis* scopeSink) { m_scopeSink = scopeSink; }
void setTVScreen(TVScreenAnalog *tvScreen) //!< set by the GUI
{
m_registeredTVScreen = tvScreen;
m_tvScreenBuffer = m_registeredTVScreen->getBackBuffer();
}
double getMagSq() const { return m_magSqAverage; } //!< Beware this is scaled to 2^30
2019-12-01 09:13:35 -05:00
bool getBFOLocked();
void setVideoTabIndex(int videoTabIndex) { m_videoTabIndex = videoTabIndex; }
void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = false);
void applySettings(const ATVDemodSettings& settings, bool force = false);
private:
struct ATVConfigPrivate
{
int m_intTVSampleRate;
int m_intNumberSamplePerLine;
ATVConfigPrivate() :
m_intTVSampleRate(0),
m_intNumberSamplePerLine(0)
{}
};
/**
* Exponential average using integers and alpha as the inverse of a power of two
*/
class AvgExpInt
{
public:
AvgExpInt(int log2Alpha) : m_log2Alpha(log2Alpha), m_m1(0), m_start(true) {}
void reset() { m_start = true; }
int run(int m0)
{
if (m_start)
{
m_m1 = m0;
m_start = false;
return m0;
}
else
{
m_m1 = m0 + m_m1 - (m_m1>>m_log2Alpha);
return m_m1>>m_log2Alpha;
}
}
private:
int m_log2Alpha;
int m_m1;
bool m_start;
};
int m_channelSampleRate;
int m_channelFrequencyOffset;
int m_samplesPerLine; //!< number of samples per complete line (includes sync signals) - adusted value
float m_samplesPerLineFrac; //!< number of samples per complete line (includes sync signals), fractional part
ATVDemodSettings m_settings;
2019-12-01 09:13:35 -05:00
int m_videoTabIndex;
//*************** SCOPE ***************
ScopeVis* m_scopeSink;
2019-12-01 09:13:35 -05:00
SampleVector m_scopeSampleBuffer;
//*************** ATV PARAMETERS ***************
TVScreenAnalog *m_registeredTVScreen;
TVScreenAnalogBuffer *m_tvScreenBuffer;
2019-12-01 09:13:35 -05:00
//int m_intNumberSamplePerLine;
int m_numberSamplesPerHTop; //!< number of samples per horizontal synchronization pulse (pulse in ultra-black) - integer value
2019-12-01 09:13:35 -05:00
int m_numberOfBlackLines; //!< this is the total number of lines not part of the image and is used for vertical screen size
int m_firstVisibleLine;
int m_fieldDetectStartPos;
int m_fieldDetectEndPos;
int m_vSyncDetectStartPos;
int m_vSyncDetectEndPos;
int m_vSyncDetectThreshold;
int m_fieldDetectThreshold1;
int m_fieldDetectThreshold2;
int m_numberOfVSyncLines;
2019-12-01 09:13:35 -05:00
int m_numberSamplesPerLineSignals; //!< number of samples in the non image part of the line (signals = front porch + pulse + back porch)
int m_numberSamplesPerHSync; //!< number of samples per horizontal synchronization pattern (pulse + back porch)
int m_numberSamplesHSyncCrop; //!< number of samples to crop from start of horizontal synchronization
bool m_interleaved; //!< interleaved image
//*************** PROCESSING ***************
int m_fieldIndex;
2019-12-01 09:13:35 -05:00
int m_synchroSamples;
int m_fieldDetectSampleCount;
int m_vSyncDetectSampleCount;
2019-12-01 09:13:35 -05:00
float m_effMin;
float m_effMax;
float m_ampMin;
float m_ampMax;
float m_ampDelta; //!< calculated amplitude of HSync pulse (should be ~0.3f)
float m_fltBufferI[6];
float m_fltBufferQ[6];
2020-08-05 12:36:07 -04:00
int m_amSampleIndex;
int m_sampleOffset; // assumed (averaged) sample offset from the start of horizontal sync pulse
float m_sampleOffsetFrac; // sample offset, fractional part
int m_sampleOffsetDetected; // detected sample offset from the start of horizontal sync pulse
2019-12-01 09:13:35 -05:00
int m_lineIndex;
2020-08-05 12:36:07 -04:00
float m_hSyncShift;
int m_hSyncErrorCount;
float prevSample;
2019-12-01 09:13:35 -05:00
int m_avgColIndex;
SampleVector m_sampleBuffer;
float m_sampleRangeCorrection;
2019-12-01 09:13:35 -05:00
//*************** RF ***************
MovingAverageUtil<double, double, 32> m_magSqAverage;
MovingAverageUtilVar<double, double> m_ampAverage;
2019-12-01 09:13:35 -05:00
NCO m_nco;
SimplePhaseLock m_bfoPLL;
SecondOrderRecursiveFilter m_bfoFilter;
// Used for vestigial SSB with asymmetrical filtering (needs double sideband scheme)
fftfilt* m_DSBFilter;
Complex* m_DSBFilterBuffer;
int m_DSBFilterBufferIndex;
static const int m_ssbFftLen;
// Used for FM
PhaseDiscriminators m_objPhaseDiscri;
void demod(Complex& c);
void applyStandard(int sampleRate, ATVDemodSettings::ATVStd atvStd, float lineDuration);
2019-12-01 09:13:35 -05:00
inline void processSample(float& sample, int& sampleVideo)
2019-12-01 09:13:35 -05:00
{
// Filling pixel on the current line - reference index 0 at start of sync pulse
m_tvScreenBuffer->setSampleValue(m_sampleOffset - m_numberSamplesPerHSync, sampleVideo);
2019-12-01 09:13:35 -05:00
if (m_settings.m_hSync)
2019-12-01 09:13:35 -05:00
{
// Horizontal Synchro detection
if ((prevSample >= m_settings.m_levelSynchroTop &&
sample < m_settings.m_levelSynchroTop) // horizontal synchro detected
&& (m_sampleOffsetDetected > m_samplesPerLine - m_numberSamplesPerHTop))
{
2020-08-05 12:36:07 -04:00
float sampleOffsetDetectedFrac =
(sample - m_settings.m_levelSynchroTop) / (prevSample - sample);
2020-08-05 12:36:07 -04:00
float hSyncShift = -m_sampleOffset - m_sampleOffsetFrac - sampleOffsetDetectedFrac;
if (hSyncShift > m_samplesPerLine / 2)
2020-08-05 12:36:07 -04:00
hSyncShift -= m_samplesPerLine;
else if (hSyncShift < -m_samplesPerLine / 2)
2020-08-05 12:36:07 -04:00
hSyncShift += m_samplesPerLine;
if (fabs(hSyncShift) > m_numberSamplesPerHTop)
{
m_hSyncErrorCount++;
2020-08-05 12:36:07 -04:00
if (m_hSyncErrorCount >= 4)
{
// Fast sync: shift is too large, needs to be fixed ASAP
2020-08-05 12:36:07 -04:00
m_hSyncShift = hSyncShift;
m_hSyncErrorCount = 0;
}
}
else
{
2020-08-05 12:36:07 -04:00
// Slow sync: slight adjustment is needed
m_hSyncShift = hSyncShift * 0.2f;
m_hSyncErrorCount = 0;
}
2020-08-05 12:36:07 -04:00
m_sampleOffsetDetected = 0;
}
else
2020-08-05 12:36:07 -04:00
m_sampleOffsetDetected++;
2019-12-01 09:13:35 -05:00
}
2020-08-05 12:36:07 -04:00
m_sampleOffset++;
2019-12-01 09:13:35 -05:00
if (m_settings.m_vSync)
2019-12-01 09:13:35 -05:00
{
2020-08-05 12:36:07 -04:00
if (m_sampleOffset > m_fieldDetectStartPos && m_sampleOffset < m_fieldDetectEndPos)
m_fieldDetectSampleCount += sample < m_settings.m_levelSynchroTop;
2020-08-05 12:36:07 -04:00
if (m_sampleOffset > m_vSyncDetectStartPos && m_sampleOffset < m_vSyncDetectEndPos)
m_vSyncDetectSampleCount += sample < m_settings.m_levelSynchroTop;
2019-12-01 09:13:35 -05:00
}
// end of line
2020-08-05 12:36:07 -04:00
if (m_sampleOffset >= m_samplesPerLine)
{
float sampleOffsetFloat = m_hSyncShift + m_sampleOffsetFrac - m_samplesPerLineFrac;
m_sampleOffset = sampleOffsetFloat;
m_sampleOffsetFrac = sampleOffsetFloat - m_sampleOffset;
2020-08-05 12:36:07 -04:00
m_hSyncShift = 0.0f;
m_lineIndex++;
if (m_settings.m_atvStd == ATVDemodSettings::ATVStdHSkip) {
processEOLHSkip();
} else {
processEOLClassic();
2019-12-01 09:13:35 -05:00
}
}
prevSample = sample;
2019-12-01 09:13:35 -05:00
}
// Standard vertical sync
inline void processEOLClassic()
{
if (m_lineIndex == m_numberOfVSyncLines + 3 && m_fieldIndex == 0)
{
m_tvScreenBuffer = m_registeredTVScreen->swapBuffers();
}
if (m_vSyncDetectSampleCount > m_vSyncDetectThreshold &&
(m_lineIndex < 3 || m_lineIndex > m_numberOfVSyncLines + 1) && m_settings.m_vSync)
{
if (m_interleaved)
{
if (m_fieldDetectSampleCount > m_fieldDetectThreshold1)
m_fieldIndex = 0;
else if (m_fieldDetectSampleCount < m_fieldDetectThreshold2)
m_fieldIndex = 1;
}
m_lineIndex = 2;
}
m_fieldDetectSampleCount = 0;
m_vSyncDetectSampleCount = 0;
if (m_lineIndex > m_settings.m_nbLines / 2 + m_fieldIndex && m_interleaved)
{
m_lineIndex = 1;
m_fieldIndex = 1 - m_fieldIndex;
}
else if (m_lineIndex > m_settings.m_nbLines && !m_interleaved)
{
m_lineIndex = 1;
m_fieldIndex = 0;
}
int rowIndex = m_lineIndex - m_firstVisibleLine;
if (m_interleaved)
rowIndex = rowIndex * 2 - m_fieldIndex;
m_tvScreenBuffer->selectRow(rowIndex, m_sampleOffsetFrac);
}
// Vertical sync is obtained by skipping horizontal sync on the line that triggers vertical sync (new frame)
inline void processEOLHSkip()
{
2020-08-05 12:36:07 -04:00
if ((m_sampleOffsetDetected > (3 * m_samplesPerLine) / 2) // Vertical sync is first horizontal sync after skip (count at least 1.5 line length)
|| (!m_settings.m_vSync && (m_lineIndex >= m_settings.m_nbLines))) // Vsync ignored and reached nominal number of lines per frame
{
m_tvScreenBuffer = m_registeredTVScreen->swapBuffers();
2020-08-05 12:36:07 -04:00
m_lineIndex = 0;
}
m_tvScreenBuffer->selectRow(m_lineIndex, m_sampleOffsetFrac);
}
2019-12-01 09:13:35 -05:00
};
#endif // INCLUDE_ATVDEMODSINK_H