1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-05 00:11:16 -05:00
sdrangel/modems/m17/ClockRecovery.h

243 lines
6.4 KiB
C
Raw Normal View History

2022-07-04 17:03:07 -04:00
// Copyright 2021 modemm17 LLC.
#pragma once
#include <array>
#include <cstddef>
#include <cstdint>
#include <numeric>
#include <cassert>
2022-07-04 17:03:07 -04:00
namespace modemm17
{
/**
* Calculate the phase estimates for each sample position.
*
* This performs a running calculation of the phase of each bit position.
* It is very noisy for individual samples, but quite accurate when
* averaged over an entire M17 frame.
*
* It is designed to be used to calculate the best bit position for each
* frame of data. Samples are collected and averaged. When update() is
* called, the best sample index and clock are estimated, and the counters
* reset for the next frame.
*
* It starts counting bit 0 as the first bit received after a reset.
*
* This is very efficient as it only uses addition and subtraction for
* each bit sample. And uses one multiply and divide per update (per
* frame).
*
* This will permit a clock error of up to 500ppm. This allows up to
* 250ppm error for both transmitter and receiver clocks. This is
* less than one sample per frame when the sample rate is 48000 SPS.
*
* @inv current_index_ is in the interval [0, SAMPLES_PER_SYMBOL).
* @inv sample_index_ is in the interval [0, SAMPLES_PER_SYMBOL).
* @inv clock_ is in the interval [0.9995, 1.0005]
*/
template <size_t SampleRate, size_t SymbolRate>
class ClockRecovery
{
static constexpr size_t SAMPLES_PER_SYMBOL = SampleRate / SymbolRate;
static constexpr int8_t MAX_OFFSET = SAMPLES_PER_SYMBOL / 2;
static constexpr float dx = 1.0 / SAMPLES_PER_SYMBOL;
static constexpr float MAX_CLOCK = 1.0005;
static constexpr float MIN_CLOCK = 0.9995;
std::array<float, SAMPLES_PER_SYMBOL> estimates_;
size_t sample_count_ = 0;
uint16_t frame_count_ = 0;
uint8_t sample_index_ = 0;
uint8_t prev_sample_index_ = 0;
uint8_t index_ = 0;
float offset_ = 0.0;
float clock_ = 1.0;
float prev_sample_ = 0.0;
/**
* Find the sample index.
*
* There are @p SAMPLES_PER_INDEX bins. It is expected that half are
* positive values and half are negative. The positive and negative
* bins will be grouped together such that there is a single transition
* from positive values to negative values.
*
* The best bit position is always the position with the positive value
* at that transition point. It will be the bit index with the highest
* energy.
*
* @post sample_index_ contains the best sample point.
*/
void update_sample_index_()
{
uint8_t index = 0;
// Find falling edge.
bool is_positive = false;
for (size_t i = 0; i != SAMPLES_PER_SYMBOL; ++i)
{
float phase = estimates_[i];
if (!is_positive && phase > 0)
{
is_positive = true;
}
else if (is_positive && phase < 0)
{
index = i;
break;
}
}
sample_index_ = index == 0 ? SAMPLES_PER_SYMBOL - 1 : index - 1;
}
/**
* Compute the drift in sample points from the last update.
*
* This should never be greater than one.
*/
float calc_offset_()
{
int8_t offset = sample_index_ - prev_sample_index_;
// When in spec, the clock should drift by less than 1 sample per frame.
2022-06-16 20:25:34 -04:00
if (offset >= MAX_OFFSET)
{
offset -= SAMPLES_PER_SYMBOL;
}
2022-06-16 20:25:34 -04:00
else if (offset <= -MAX_OFFSET)
{
offset += SAMPLES_PER_SYMBOL;
}
return offset;
}
void update_clock_()
{
// update_sample_index_() must be called first.
2022-06-16 20:25:34 -04:00
if (frame_count_ == 0)
{
prev_sample_index_ = sample_index_;
offset_ = 0.0;
clock_ = 1.0;
return;
}
offset_ += calc_offset_();
prev_sample_index_ = sample_index_;
clock_ = 1.0 + (offset_ / (frame_count_ * sample_count_));
clock_ = std::min(MAX_CLOCK, std::max(MIN_CLOCK, clock_));
}
public:
ClockRecovery()
{
estimates_.fill(0);
}
/**
* Update clock recovery with the given sample. This will advance the
* current sample index by 1.
*/
void operator()(float sample)
{
float dy = (sample - prev_sample_);
if (sample + prev_sample_ < 0)
{
// Invert the phase estimate when sample midpoint is less than 0.
dy = -dy;
}
prev_sample_ = sample;
estimates_[index_] += dy;
index_ += 1;
if (index_ == SAMPLES_PER_SYMBOL)
{
index_ = 0;
}
sample_count_ += 1;
}
/**
* Reset the state of the clock recovery system. This should be called
* when a new transmission is detected.
*/
void reset()
{
sample_count_ = 0;
frame_count_ = 0;
index_ = 0;
sample_index_ = 0;
estimates_.fill(0);
}
/**
* Return the current sample index. This will always be in the range of
* [0..SAMPLES_PER_SYMBOL).
*/
uint8_t current_index() const
{
return index_;
}
/**
* Return the estimated sample clock increment based on the last update.
*
* The value is only valid after samples have been collected and update()
* has been called.
*/
float clock_estimate() const
{
return clock_;
}
/**
* Return the estimated "best sample index" based on the last update.
*
* The value is only valid after samples have been collected and update()
* has been called.
*/
uint8_t sample_index() const
{
return sample_index_;
}
/**
* Update the sample index and clock estimates, and reset the state for
* the next frame of data.
*
* @pre index_ = 0
* @pre sample_count_ > 0
*
* After this is called, sample_index() and clock_estimate() will have
* valid, updated results.
*
* The more samples between calls to update, the more accurate the
* estimates will be.
*
* @return true if the preconditions are met and the update has been
* performed, otherwise false.
*/
bool update()
{
if (!(sample_count_ != 0 && index_ == 0)) return false;
update_sample_index_();
update_clock_();
frame_count_ = std::min(0x1000, 1 + frame_count_);
sample_count_ = 0;
estimates_.fill(0);
return true;
}
};
2022-07-04 17:03:07 -04:00
} // modemm17