sdrangel/sdrbase/dsp/ctcssdetector.cpp

172 lines
3.3 KiB
C++
Raw Normal View History

/*
* ctcssdetector.cpp
*
* Created on: Jun 16, 2015
* Author: f4exb
*/
2017-09-15 22:50:25 -04:00
#include <math.h>
#include "dsp/ctcssdetector.h"
#include "ctcssfrequencies.h"
2017-09-15 22:50:25 -04:00
#undef M_PI
#define M_PI 3.14159265358979323846
CTCSSDetector::CTCSSDetector() :
N(0),
sampleRate(0),
samplesProcessed(0),
maxPowerIndex(0),
toneDetected(false),
maxPower(0.0)
{
nTones = CTCSSFrequencies::m_nbFreqs;
k = new Real[nTones];
coef = new Real[nTones];
toneSet = new Real[nTones];
u0 = new Real[nTones];
u1 = new Real[nTones];
power = new Real[nTones];
toneSet = CTCSSFrequencies::m_Freqs;
}
CTCSSDetector::CTCSSDetector(int _nTones, Real *tones) :
N(0),
sampleRate(0),
samplesProcessed(0),
maxPowerIndex(0),
toneDetected(false),
maxPower(0.0)
{
nTones = CTCSSFrequencies::m_nbFreqs;
k = new Real[nTones];
coef = new Real[nTones];
toneSet = new Real[nTones];
u0 = new Real[nTones];
u1 = new Real[nTones];
power = new Real[nTones];
toneSet = CTCSSFrequencies::m_Freqs;
}
CTCSSDetector::~CTCSSDetector()
{
delete[] k;
delete[] coef;
delete[] toneSet;
delete[] u0;
delete[] u1;
delete[] power;
}
2016-02-28 04:53:37 -05:00
void CTCSSDetector::setCoefficients(int zN, int _samplerate )
{
2016-02-28 04:53:37 -05:00
N = zN; // save the basic parameters for use during analysis
sampleRate = _samplerate;
// for each of the frequencies (tones) of interest calculate
// k and the associated filter coefficient as per the Goertzel
// algorithm. Note: we are using a real value (as apposed to
// an integer as described in some references. k is retained
// for later display. The tone set is specified in the
// constructor. Notice that the resulting coefficients are
// independent of N.
for (int j = 0; j < nTones; ++j)
{
k[j] = ((double)N * toneSet[j]) / (double)sampleRate;
coef[j] = 2.0 * cos((2.0 * M_PI * toneSet[j])/(double)sampleRate);
}
}
// Analyze an input signal for the presence of CTCSS tones.
bool CTCSSDetector::analyze(Real *sample)
{
feedback(*sample); // Goertzel feedback
samplesProcessed += 1;
if (samplesProcessed == N) // completed a block of N
{
feedForward(); // calculate the power at each tone
samplesProcessed = 0;
return true; // have a result
}
else
{
return false;
}
}
void CTCSSDetector::feedback(Real in)
{
Real t;
// feedback for each tone
for (int j = 0; j < nTones; ++j)
{
t = u0[j];
u0[j] = in + (coef[j] * u0[j]) - u1[j];
u1[j] = t;
}
}
void CTCSSDetector::feedForward()
{
initializePower();
for (int j = 0; j < nTones; ++j)
{
power[j] = (u0[j] * u0[j]) + (u1[j] * u1[j]) - (coef[j] * u0[j] * u1[j]);
u0[j] = u1[j] = 0.0; // reset for next block.
}
evaluatePower();
}
void CTCSSDetector::reset()
{
for (int j = 0; j < nTones; ++j)
{
power[j] = u0[j] = u1[j] = 0.0; // reset
}
samplesProcessed = 0;
maxPower = 0.0;
maxPowerIndex = 0;
toneDetected = false;
}
void CTCSSDetector::initializePower()
{
for (int j = 0; j < nTones; ++j)
{
power[j] = 0.0; // reset
}
}
void CTCSSDetector::evaluatePower()
{
Real sumPower = 0.0;
2015-06-16 19:51:25 -04:00
Real aboveAvg = 2.0; // Arbitrary max power above average threshold
maxPower = 0.0;
for (int j = 0; j < nTones; ++j)
{
sumPower += power[j];
if (power[j] > maxPower)
{
maxPower = power[j];
maxPowerIndex = j;
}
}
toneDetected = (maxPower > (sumPower/nTones) + aboveAvg);
}