1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-21 15:51:47 -05:00

WDSP: more rework

This commit is contained in:
f4exb 2024-08-05 20:05:59 +02:00
parent de756413e8
commit 34917a0b21
32 changed files with 1483 additions and 1360 deletions

View File

@ -26,7 +26,6 @@
#include "util/messagequeue.h"
#include "maincore.h"
#include "RXA.hpp"
#include "nbp.hpp"
#include "meter.hpp"
#include "patchpanel.hpp"
#include "wcpAGC.hpp"
@ -83,10 +82,10 @@ void WDSPRxSink::SpectrumProbe::proceed(const float *in, int nb_samples)
{
if (!(m_undersampleCount++ & decim_mask))
{
float avgr = m_sum.real() / decim;
float avgi = m_sum.imag() / decim;
float avgr = m_sum.real() / (float) decim;
float avgi = m_sum.imag() / (float) decim;
if (!m_dsb & !m_usb)
if (!m_dsb && !m_usb)
{ // invert spectrum for LSB
m_sampleVector.push_back(Sample(avgi*SDR_RX_SCALEF, avgr*SDR_RX_SCALEF));
}
@ -175,14 +174,14 @@ void WDSPRxSink::feed(const SampleVector::const_iterator& begin, const SampleVec
}
}
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples)
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples) const
{
avg = m_sAvg;
peak = m_sPeak;
nbSamples = m_sCount;
}
void WDSPRxSink::processOneSample(Complex &ci)
void WDSPRxSink::processOneSample(const Complex &ci)
{
m_rxa->get_inbuff()[2*m_inCount] = ci.imag() / SDR_RX_SCALEF;
m_rxa->get_inbuff()[2*m_inCount+1] = ci.real() / SDR_RX_SCALEF;
@ -204,10 +203,10 @@ void WDSPRxSink::processOneSample(Complex &ci)
}
else
{
const double& cr = m_rxa->get_outbuff()[2*i+1];
const double& ci = m_rxa->get_outbuff()[2*i];
qint16 zr = cr * 32768.0;
qint16 zi = ci * 32768.0;
const double& dr = m_rxa->get_outbuff()[2*i+1];
const double& di = m_rxa->get_outbuff()[2*i];
qint16 zr = dr * 32768.0;
qint16 zi = di * 32768.0;
m_audioBuffer[m_audioBufferFill].r = zr;
m_audioBuffer[m_audioBufferFill].l = zi;
@ -219,7 +218,7 @@ void WDSPRxSink::processOneSample(Complex &ci)
else
{
Real demod = (zr + zi) * 0.7;
qint16 sample = (qint16)(demod);
auto sample = (qint16)(demod);
m_demodBuffer[m_demodBufferFill++] = sample;
}
@ -228,13 +227,11 @@ void WDSPRxSink::processOneSample(Complex &ci)
QList<ObjectPipe*> dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (dataPipes.size() > 0)
if (!dataPipes.empty())
{
QList<ObjectPipe*>::iterator it = dataPipes.begin();
for (; it != dataPipes.end(); ++it)
for (auto dataPipe : dataPipes)
{
DataFifo *fifo = qobject_cast<DataFifo*>((*it)->m_element);
DataFifo *fifo = qobject_cast<DataFifo*>(dataPipe->m_element);
if (fifo)
{
@ -245,7 +242,7 @@ void WDSPRxSink::processOneSample(Complex &ci)
);
}
}
}
}
m_demodBufferFill = 0;
}
@ -316,7 +313,7 @@ void WDSPRxSink::applyAudioSampleRate(int sampleRate)
QList<ObjectPipe*> pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (pipes.size() > 0)
if (!pipes.empty())
{
for (const auto& pipe : pipes)
{
@ -385,8 +382,13 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
(m_settings.m_demod != settings.m_demod) ||
(m_settings.m_dsb != settings.m_dsb) || force)
{
float band, low, high, fLow, fHigh;
bool usb, dsb;
float band;
float low;
float high;
float fLow;
float fHigh;
bool usb;
bool dsb;
band = settings.m_profiles[settings.m_profileIndex].m_highCutoff;
high = band;
@ -770,8 +772,8 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
|| (m_settings.m_agcHangThreshold != settings.m_agcHangThreshold)
|| (m_settings.m_agcGain != settings.m_agcGain) || force)
{
m_rxa->agc->setSlope(settings.m_agcSlope); // SetRXAAGCSlope(id, rx->agc_slope);
m_rxa->agc->setTop((float) settings.m_agcGain); // SetRXAAGCTop(id, rx->agc_gain);
m_rxa->agc->setSlope(settings.m_agcSlope);
m_rxa->agc->setTop((float) settings.m_agcGain);
if (settings.m_agc)
{
@ -779,31 +781,31 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
{
case WDSPRxProfile::WDSPRxAGCMode::AGCLong:
m_rxa->agc->setMode(1);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(2000); // SetRXAAGCHang(id, 2000);
m_rxa->agc->setDecay(2000); // SetRXAAGCDecay(id, 2000);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(2000);
m_rxa->agc->setDecay(2000);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCSlow:
m_rxa->agc->setMode(2);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(1000); // SetRXAAGCHang(id, 1000);
m_rxa->agc->setDecay(500); // SetRXAAGCDecay(id, 500);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(1000);
m_rxa->agc->setDecay(500);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCMedium:
m_rxa->agc->setMode(3);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(0); // SetRXAAGCHang(id, 0);
m_rxa->agc->setDecay(250); // SetRXAAGCDecay(id, 250);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(0);
m_rxa->agc->setDecay(250);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCFast:
m_rxa->agc->setMode(4);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(0); // SetRXAAGCHang(id, 0);
m_rxa->agc->setDecay(50); // SetRXAAGCDecay(id, 50);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(0);
m_rxa->agc->setDecay(50);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
}
}

View File

@ -55,13 +55,14 @@ public:
bool getAudioActive() const { return m_audioActive; }
void setChannel(ChannelAPI *channel) { m_channel = channel; }
void setAudioFifoLabel(const QString& label) { m_audioFifo.setLabel(label); }
void getMagSqLevels(double& avg, double& peak, int& nbSamples);
void getMagSqLevels(double& avg, double& peak, int& nbSamples) const;
private:
class SpectrumProbe : public WDSP::BufferProbe
{
public:
SpectrumProbe(SampleVector& sampleVector);
explicit SpectrumProbe(SampleVector& sampleVector);
virtual ~SpectrumProbe() = default;
virtual void proceed(const float *in, int nbSamples);
void setSpanLog2(int spanLog2);
void setDSB(bool dsb) { m_dsb = dsb; }
@ -102,8 +103,6 @@ private:
Interpolator m_interpolator;
Real m_interpolatorDistance;
Real m_interpolatorDistanceRemain;
// fftfilt* SSBFilter;
// fftfilt* DSBFilter;
SpectrumVis* m_spectrumSink;
SampleVector m_sampleBuffer;
@ -123,7 +122,7 @@ private:
static const int m_wdspSampleRate;
static const int m_wdspBufSize;
void processOneSample(Complex &ci);
void processOneSample(const Complex &ci);
};
#endif // INCLUDE_SSBDEMODSINK_H

View File

@ -25,6 +25,7 @@ set(wdsp_SOURCES
dsphp.cpp
emnr.cpp
emph.cpp
emphp.cpp
eqp.cpp
fcurve.cpp
fir.cpp
@ -93,6 +94,7 @@ set(wdsp_HEADERS
dsphp.hpp
emnr.hpp
emph.hpp
emphp.hpp
eqp.hpp
fcurve.hpp
fir.hpp

View File

@ -55,6 +55,7 @@ warren@wpratt.com
#include "nob.hpp"
#include "speak.hpp"
#include "mpeak.hpp"
#include "fir.hpp"
namespace WDSP {
@ -71,7 +72,7 @@ RXA::RXA(
)
{
mode = RXA::RXA_LSB;
std::fill(meter, meter + RXA::RXA_METERTYPE_LAST, 0);
std::fill(meter.begin(), meter.end(), 0);
// Noise blanker (ANB or "NB")
anb = new ANB(
@ -127,17 +128,17 @@ RXA::RXA(
// Input meter - ADC
adcmeter = new METER(
0, // run
0, // optional pointer to another 'run'
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter, // result vector
meter.data(), // result vector
RXA_ADC_AV, // index for average value
RXA_ADC_PK, // index for peak value
-1, // index for gain value - disabled
0); // pointer for gain computation
nullptr); // pointer for gain computation
// Notched bandpass section
@ -200,17 +201,17 @@ RXA::RXA(
// S-meter
smeter = new METER(
1, // run
0, // optional pointer to another 'run'
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter, // result vector
meter.data(), // result vector
RXA_S_AV, // index for average value
RXA_S_PK, // index for peak value
-1, // index for gain value - disabled
0); // pointer for gain computation
nullptr); // pointer for gain computation
// AM squelch capture (for other modes than FM)
amsq = new AMSQ(
@ -416,13 +417,13 @@ RXA::RXA(
// AGC meter
agcmeter = new METER(
0, // run
0, // optional pointer to another 'run'
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter, // result vector
meter.data(), // result vector
RXA_AGC_AV, // index for average value
RXA_AGC_PK, // index for peak value
RXA_AGC_GAIN, // index for gain value
@ -903,7 +904,7 @@ void RXA::bp1Set ()
a->run = 0;
if (!old && a->run)
a->flush();
FIRCORE::setUpdate_fircore (a->fircore);
FIRCORE::setUpdate_fircore(a->fircore);
}
void RXA::bpsnbaCheck(int _mode, int _notch_run)
@ -988,7 +989,7 @@ void RXA::bpsnbaSet()
default:
break;
}
FIRCORE::setUpdate_fircore (a->bpsnba->fircore);
FIRCORE::setUpdate_fircore(a->bpsnba->fircore);
}
void RXA::updateNBPFiltersLightWeight()
@ -1004,7 +1005,7 @@ void RXA::updateNBPFilters()
if (a->fnfrun)
{
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
FIRCORE::setImpulse_fircore(a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if (b->bpsnba->fnfrun)
@ -1025,7 +1026,7 @@ int RXA::nbpAddNotch(int _notch, double _fcenter, double _fwidth, int _active)
return rval;
}
int RXA::nbpGetNotch(int _notch, double* _fcenter, double* _fwidth, int* _active)
int RXA::nbpGetNotch(int _notch, double* _fcenter, double* _fwidth, int* _active) const
{
NOTCHDB *a = ndb;
int rval = a->getNotch(_notch, _fcenter, _fwidth, _active);
@ -1056,7 +1057,7 @@ int RXA::nbpEditNotch(int _notch, double _fcenter, double _fwidth, int _active)
return rval;
}
void RXA::nbpGetNumNotches(int* _nnotches)
void RXA::nbpGetNumNotches(int* _nnotches) const
{
const NOTCHDB *a = ndb;
a->getNumNotches(_nnotches);
@ -1096,10 +1097,10 @@ void RXA::nbpSetNotchesRun(int _run)
b->fnfrun = a->master_run;
bpsnbaCheck(mode, _run);
b->calc_impulse(); // recalc nbp impulse response
FIRCORE::setImpulse_fircore (b->fircore, b->impulse, 0); // calculate new filter masks
FIRCORE::setImpulse_fircore(b->fircore, b->impulse, 0); // calculate new filter masks
delete[] (b->impulse);
bpsnbaSet();
FIRCORE::setUpdate_fircore (b->fircore); // apply new filter masks
FIRCORE::setUpdate_fircore(b->fircore); // apply new filter masks
}
}
@ -1110,15 +1111,15 @@ void RXA::nbpSetWindow(int _wintype)
a = nbp0;
b = bpsnba;
if ((a->wintype != _wintype))
if (a->wintype != _wintype)
{
a->wintype = _wintype;
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
FIRCORE::setImpulse_fircore(a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if ((b->wintype != _wintype))
if (b->wintype != _wintype)
{
b->wintype = _wintype;
b->recalc_bpsnba_filter(1);
@ -1132,15 +1133,15 @@ void RXA::nbpSetAutoIncrease(int _autoincr)
a = nbp0;
b = bpsnba;
if ((a->autoincr != _autoincr))
if (a->autoincr != _autoincr)
{
a->autoincr = _autoincr;
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
FIRCORE::setImpulse_fircore(a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if ((b->autoincr != _autoincr))
if (b->autoincr != _autoincr)
{
b->autoincr = _autoincr;
b->recalc_bpsnba_filter(1);
@ -1260,7 +1261,7 @@ void RXA::setEMNRPosition(int _position)
bp1->position = _position;
}
void RXA::getAGCThresh(double *_thresh, double _size, double _rate)
void RXA::getAGCThresh(double *_thresh, double _size, double _rate) const
//for line on bandscope.
{
double noise_offset;

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_rxa_h
#define wdsp_rxa_h
#include <array>
#include "comm.hpp"
#include "unit.hpp"
#include "export.h"
@ -95,7 +97,7 @@ public:
};
int mode;
double meter[RXA_METERTYPE_LAST];
std::array<double, RXA_METERTYPE_LAST> meter;
ANB *anb;
NOB *nob;
@ -119,7 +121,6 @@ public:
WCPAGC *agc;
METER *agcmeter;
BANDPASS *bp1;
BPS *bps1;
SIPHON *sip1;
CBL *cbl;
SPEAK *speak;
@ -136,7 +137,7 @@ public:
);
RXA(const RXA&) = delete;
RXA& operator=(const RXA& other) = delete;
~RXA();
virtual ~RXA();
void flush();
void execute();
@ -161,10 +162,10 @@ public:
void updateNBPFiltersLightWeight();
void updateNBPFilters();
int nbpAddNotch(int notch, double fcenter, double fwidth, int active);
int nbpGetNotch(int notch, double* fcenter, double* fwidth, int* active);
int nbpGetNotch(int notch, double* fcenter, double* fwidth, int* active) const;
int nbpDeleteNotch(int notch);
int nbpEditNotch(int notch, double fcenter, double fwidth, int active);
void nbpGetNumNotches(int* nnotches);
void nbpGetNumNotches(int* nnotches) const;
void nbpSetTuneFrequency(double tunefreq);
void nbpSetShiftFrequency(double shift);
void nbpSetNotchesRun(int run);
@ -185,7 +186,8 @@ public:
void setEMNRPosition(int position);
// WCPAGC
void setAGCThresh(double thresh, double size, double rate);
void getAGCThresh(double *thresh, double size, double rate);
void getAGCThresh(double *thresh, double size, double rate) const;
// Collectives
void setPassband(float f_low, float f_high);
void setNC(int nc);

View File

@ -39,7 +39,7 @@ warren@wpratt.com
#include "bps.hpp"
#include "osctrl.hpp"
#include "wcpAGC.hpp"
#include "emph.hpp"
#include "emphp.hpp"
#include "fmmod.hpp"
#include "siphon.hpp"
#include "gen.hpp"
@ -171,7 +171,7 @@ TXA::TXA(
-1, // index for gain value
nullptr); // pointer for gain computation
preemph = EMPHP::create_emphp (
preemph = new EMPHP(
0, // run
1, // position
dsp_size, // size
@ -224,10 +224,10 @@ TXA::TXA(
&leveler->gain); // pointer for gain computation
{
std::array<float, 5> default_F = {200.0, 1000.0, 2000.0, 3000.0, 4000.0};
std::array<float, 5> default_G = { 0.0, 5.0, 10.0, 10.0, 5.0};
std::array<float, 5> default_E = { 7.0, 7.0, 7.0, 7.0, 7.0};
cfcomp = CFCOMP::create_cfcomp(
std::array<double, 5> default_F = {200.0, 1000.0, 2000.0, 3000.0, 4000.0};
std::array<double, 5> default_G = { 0.0, 5.0, 10.0, 10.0, 5.0};
std::array<double, 5> default_E = { 7.0, 7.0, 7.0, 7.0, 7.0};
cfcomp = new CFCOMP(
0, // run
0, // position
0, // post-equalizer run
@ -359,7 +359,7 @@ TXA::TXA(
2.000, // hang_thresh
0.100); // tau_hang_decay
ammod = AMMOD::create_ammod (
ammod = new AMMOD(
0, // run - OFF by default
0, // mode: 0=>AM, 1=>DSB
dsp_size, // size
@ -514,7 +514,7 @@ TXA::~TXA()
USLEW::destroy_uslew (uslew);
delete gen1;
FMMOD::destroy_fmmod (fmmod);
AMMOD::destroy_ammod (ammod);
delete ammod;
delete alc;
delete compmeter;
delete bp2;
@ -523,10 +523,10 @@ TXA::~TXA()
COMPRESSOR::destroy_compressor (compressor);
delete bp0;
delete cfcmeter;
CFCOMP::destroy_cfcomp (cfcomp);
delete cfcomp;
delete lvlrmeter;
delete leveler;
EMPHP::destroy_emphp (preemph);
delete preemph;
delete eqmeter;
delete eqp;
delete amsq;
@ -548,10 +548,10 @@ void TXA::flush()
amsq->flush ();
eqp->flush();
eqmeter->flush ();
EMPHP::flush_emphp (preemph);
preemph->flush();
leveler->flush();
lvlrmeter->flush ();
CFCOMP::flush_cfcomp (cfcomp);
cfcomp->flush();
cfcmeter->flush ();
bp0->flush ();
COMPRESSOR::flush_compressor (compressor);
@ -560,7 +560,7 @@ void TXA::flush()
bp2->flush ();
compmeter->flush ();
alc->flush ();
AMMOD::flush_ammod (ammod);
ammod->flush();
FMMOD::flush_fmmod (fmmod);
gen1->flush();
USLEW::flush_uslew (uslew);
@ -583,10 +583,10 @@ void TXA::execute()
amsq->execute (); // downward expander action
eqp->execute (); // pre-EQ
eqmeter->execute (); // EQ meter
EMPHP::xemphp (preemph, 0); // FM pre-emphasis (first option)
preemph->execute(0); // FM pre-emphasis (first option)
leveler->execute (); // Leveler
lvlrmeter->execute (); // Leveler Meter
CFCOMP::xcfcomp (cfcomp, 0); // Continuous Frequency Compressor with post-EQ
cfcomp->execute(0); // Continuous Frequency Compressor with post-EQ
cfcmeter->execute (); // CFC+PostEQ Meter
bp0->execute (0); // primary bandpass filter
COMPRESSOR::xcompressor (compressor); // COMP compressor
@ -595,8 +595,8 @@ void TXA::execute()
bp2->execute (0); // aux bandpass (runs if CESSB)
compmeter->execute (); // COMP meter
alc->execute (); // ALC
AMMOD::xammod (ammod); // AM Modulator
EMPHP::xemphp (preemph, 1); // FM pre-emphasis (second option)
ammod->execute(); // AM Modulator
preemph->execute(1); // FM pre-emphasis (second option)
FMMOD::xfmmod (fmmod); // FM Modulator
gen1->execute(); // output signal generator (TUN and Two-tone)
USLEW::xuslew (uslew); // up-slew for AM, FM, and gens
@ -648,10 +648,10 @@ void TXA::setDSPSamplerate(int dsp_rate)
amsq->setSamplerate (dsp_rate);
eqp->setSamplerate (dsp_rate);
eqmeter->setSamplerate (dsp_rate);
EMPHP::setSamplerate_emphp (preemph, dsp_rate);
preemph->setSamplerate(dsp_rate);
leveler->setSamplerate (dsp_rate);
lvlrmeter->setSamplerate (dsp_rate);
CFCOMP::setSamplerate_cfcomp (cfcomp, dsp_rate);
cfcomp->setSamplerate(dsp_rate);
cfcmeter->setSamplerate (dsp_rate);
bp0->setSamplerate (dsp_rate);
COMPRESSOR::setSamplerate_compressor (compressor, dsp_rate);
@ -660,7 +660,7 @@ void TXA::setDSPSamplerate(int dsp_rate)
bp2->setSamplerate (dsp_rate);
compmeter->setSamplerate (dsp_rate);
alc->setSamplerate (dsp_rate);
AMMOD::setSamplerate_ammod (ammod, dsp_rate);
ammod->setSamplerate(dsp_rate);
FMMOD::setSamplerate_fmmod (fmmod, dsp_rate);
gen1->setSamplerate(dsp_rate);
USLEW::setSamplerate_uslew (uslew, dsp_rate);
@ -698,14 +698,14 @@ void TXA::setDSPBuffsize(int dsp_size)
eqp->setSize (dsp_size);
eqmeter->setBuffers (midbuff);
eqmeter->setSize (dsp_size);
EMPHP::setBuffers_emphp (preemph, midbuff, midbuff);
EMPHP::setSize_emphp (preemph, dsp_size);
preemph->setBuffers(midbuff, midbuff);
preemph->setSize(dsp_size);
leveler->setBuffers(midbuff, midbuff);
leveler->setSize(dsp_size);
lvlrmeter->setBuffers(midbuff);
lvlrmeter->setSize(dsp_size);
CFCOMP::setBuffers_cfcomp (cfcomp, midbuff, midbuff);
CFCOMP::setSize_cfcomp (cfcomp, dsp_size);
cfcomp->setBuffers(midbuff, midbuff);
cfcomp->setSize(dsp_size);
cfcmeter->setBuffers(midbuff);
cfcmeter->setSize(dsp_size);
bp0->setBuffers (midbuff, midbuff);
@ -722,8 +722,8 @@ void TXA::setDSPBuffsize(int dsp_size)
compmeter->setSize(dsp_size);
alc->setBuffers(midbuff, midbuff);
alc->setSize( dsp_size);
AMMOD::setBuffers_ammod (ammod, midbuff, midbuff);
AMMOD::setSize_ammod (ammod, dsp_size);
ammod->setBuffers(midbuff, midbuff);
ammod->setSize(dsp_size);
FMMOD::setBuffers_fmmod (fmmod, midbuff, midbuff);
FMMOD::setSize_fmmod (fmmod, dsp_size);
gen1->setBuffers(midbuff, midbuff);
@ -925,7 +925,7 @@ void TXA::setBandpassNC(int _nc)
1,
a->gain / (double)(2 * a->size)
);
FIRCORE::setNc_fircore (a->fircore, a->nc, impulse);
FIRCORE::setNc_fircore(a->fircore, a->nc, impulse);
delete[] impulse;
}
@ -943,7 +943,7 @@ void TXA::setBandpassNC(int _nc)
1,
a->gain / (double)(2 * a->size)
);
FIRCORE::setNc_fircore (a->fircore, a->nc, impulse);
FIRCORE::setNc_fircore(a->fircore, a->nc, impulse);
delete[] impulse;
}
@ -961,7 +961,7 @@ void TXA::setBandpassNC(int _nc)
1,
a->gain / (double)(2 * a->size)
);
FIRCORE::setNc_fircore (a->fircore, a->nc, impulse);
FIRCORE::setNc_fircore(a->fircore, a->nc, impulse);
delete[] impulse;
}
}
@ -974,7 +974,7 @@ void TXA::setBandpassMP(int _mp)
if (_mp != a->mp)
{
a->mp = _mp;
FIRCORE::setMp_fircore (a->fircore, a->mp);
FIRCORE::setMp_fircore(a->fircore, a->mp);
}
a = bp1;
@ -982,7 +982,7 @@ void TXA::setBandpassMP(int _mp)
if (_mp != a->mp)
{
a->mp = _mp;
FIRCORE::setMp_fircore (a->fircore, a->mp);
FIRCORE::setMp_fircore(a->fircore, a->mp);
}
a = bp2;
@ -990,7 +990,7 @@ void TXA::setBandpassMP(int _mp)
if (_mp != a->mp)
{
a->mp = _mp;
FIRCORE::setMp_fircore (a->fircore, a->mp);
FIRCORE::setMp_fircore(a->fircore, a->mp);
}
}
@ -1005,7 +1005,7 @@ void TXA::setNC(int _nc)
int oldstate = state;
setBandpassNC (_nc);
EMPHP::SetFMEmphNC (*this, _nc);
preemph->setNC (_nc);
eqp->setNC (_nc);
FMMOD::SetFMNC (*this, _nc);
CFIR::SetCFIRNC (*this, _nc);
@ -1015,15 +1015,100 @@ void TXA::setNC(int _nc)
void TXA::setMP(int _mp)
{
setBandpassMP (_mp);
EMPHP::SetFMEmphMP (*this, _mp);
preemph->setMP (_mp);
eqp->setMP (_mp);
FMMOD::SetFMMP (*this, _mp);
}
void TXA::setFMAFFilter(float _low, float _high)
{
EMPHP::SetFMPreEmphFreqs (*this, _low, _high);
FMMOD::SetFMAFFreqs (*this, _low, _high);
preemph->setFreqs (_low, _high);
FMMOD::SetFMAFFreqs(*this, _low, _high);
}
void TXA::SetBPSRun (TXA& txa, int _run)
{
txa.bp1->run = _run;
}
void TXA::SetBPSFreqs (TXA& txa, double _f_low, double _f_high)
{
float* impulse;
BPS *a;
a = txa.bps0;
if ((_f_low != a->f_low) || (_f_high != a->f_high))
{
a->f_low = _f_low;
a->f_high = _f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, _f_low, _f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if ((_f_low != a->f_low) || (_f_high != a->f_high))
{
a->f_low = _f_low;
a->f_high = _f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, _f_low, _f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2;
if ((_f_low != a->f_low) || (_f_high != a->f_high))
{
a->f_low = _f_low;
a->f_high = _f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, _f_low, _f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
}
void TXA::SetBPSWindow (TXA& txa, int _wintype)
{
float* impulse;
BPS *a;
a = txa.bps0;
if (a->wintype != _wintype)
{
a->wintype = _wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if (a->wintype != _wintype)
{
a->wintype = _wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2;
if (a->wintype != _wintype)
{
a->wintype = _wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass (a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
}
} // namespace WDSP

View File

@ -172,7 +172,7 @@ public:
);
TXA(const TXA&) = delete;
TXA& operator=(const TXA& other) = delete;
~TXA();
virtual ~TXA();
void flush();
void execute();
@ -190,6 +190,10 @@ public:
void setBandpassFreqs(float f_low, float f_high);
void setBandpassNC(int nc);
void setBandpassMP(int mp);
// BPS
static void SetBPSRun (TXA& txa, int run);
static void SetBPSFreqs (TXA& txa, double low, double high);
static void SetBPSWindow (TXA& txa, int wintype);
// Collectives
void setNC(int nc);

View File

@ -53,22 +53,22 @@ AMD::AMD
double _omegaN,
double _tauR,
double _tauI
)
) :
run(_run),
buff_size(_buff_size),
in_buff(_in_buff),
out_buff(_out_buff),
mode(_mode),
sample_rate((double) _sample_rate),
fmin(_fmin),
fmax(_fmax),
zeta(_zeta),
omegaN(_omegaN),
tauR(_tauR),
tauI(_tauI),
sbmode(_sbmode),
levelfade(_levelfade)
{
run = _run;
buff_size = _buff_size;
in_buff = _in_buff;
out_buff = _out_buff;
mode = _mode;
levelfade = _levelfade;
sbmode = _sbmode;
sample_rate = (double) _sample_rate;
fmin = _fmin;
fmax = _fmax;
zeta = _zeta;
omegaN = _omegaN;
tauR = _tauR;
tauI = _tauI;
init();
}

View File

@ -33,72 +33,74 @@ warren@wpratt.com
namespace WDSP {
AMMOD* AMMOD::create_ammod (int run, int mode, int size, float* in, float* out, float c_level)
AMMOD::AMMOD(
int _run,
int _mode,
int _size,
float* _in,
float* _out,
double _c_level
)
{
AMMOD *a = new AMMOD;
a->run = run;
a->mode = mode;
a->size = size;
a->in = in;
a->out = out;
a->c_level = c_level;
a->a_level = 1.0 - a->c_level;
a->mult = 1.0 / sqrt (2.0);
return a;
run = _run;
mode = _mode;
size = _size;
in = _in;
out = _out;
c_level = _c_level;
a_level = 1.0 - c_level;
mult = 1.0 / sqrt (2.0);
}
void AMMOD::destroy_ammod(AMMOD *a)
void AMMOD::flush()
{
delete a;
// Nothing to flush
}
void AMMOD::flush_ammod(AMMOD *)
void AMMOD::execute()
{
}
void AMMOD::xammod(AMMOD *a)
{
if (a->run)
if (run)
{
int i;
switch (a->mode)
switch (mode)
{
case 0: // AM
for (i = 0; i < a->size; i++)
a->out[2 * i + 0] = a->out[2 * i + 1] = a->mult * (a->c_level + a->a_level * a->in[2 * i + 0]);
for (i = 0; i < size; i++)
out[2 * i + 0] = out[2 * i + 1] = (float) (mult * (c_level + a_level * in[2 * i + 0]));
break;
case 1: // DSB
for (i = 0; i < a->size; i++)
a->out[2 * i + 0] = a->out[2 * i + 1] = a->mult * a->in[2 * i + 0];
for (i = 0; i < size; i++)
out[2 * i + 0] = out[2 * i + 1] = (float) (mult * in[2 * i + 0]);
break;
case 2: // SSB w/Carrier
for (i = 0; i < a->size; i++)
for (i = 0; i < size; i++)
{
a->out[2 * i + 0] = a->mult * a->c_level + a->a_level * a->in[2 * i + 0];
a->out[2 * i + 1] = a->mult * a->c_level + a->a_level * a->in[2 * i + 1];
out[2 * i + 0] = (float) (mult * c_level + a_level * in[2 * i + 0]);
out[2 * i + 1] = (float) (mult * c_level + a_level * in[2 * i + 1]);
}
break;
default:
break;
}
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void AMMOD::setBuffers_ammod(AMMOD *a, float* in, float* out)
void AMMOD::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void AMMOD::setSamplerate_ammod(AMMOD *, int)
void AMMOD::setSamplerate(int)
{
// Nothing to do
}
void AMMOD::setSize_ammod(AMMOD *a, int size)
void AMMOD::setSize(int _size)
{
a->size = size;
size = _size;
}
/********************************************************************************************************
@ -107,10 +109,10 @@ void AMMOD::setSize_ammod(AMMOD *a, int size)
* *
********************************************************************************************************/
void AMMOD::SetAMCarrierLevel (TXA& txa, float c_level)
void AMMOD::setAMCarrierLevel(double _c_level)
{
txa.ammod->c_level = c_level;
txa.ammod->a_level = 1.0 - c_level;
c_level = _c_level;
a_level = 1.0 - _c_level;
}
} // namespace WDSP

View File

@ -42,19 +42,29 @@ public:
int size;
float* in;
float* out;
float c_level;
float a_level;
float mult;
double c_level;
double a_level;
double mult;
static AMMOD* create_ammod(int run, int mode, int size, float* in, float* out, float c_level);
static void destroy_ammod (AMMOD *a);
static void flush_ammod (AMMOD *a);
static void xammod (AMMOD *a);
static void setBuffers_ammod (AMMOD *a, float* in, float* out);
static void setSamplerate_ammod (AMMOD *a, int rate);
static void setSize_ammod (AMMOD *a, int size);
AMMOD(
int run,
int mode,
int size,
float* in,
float* out,
double c_level
);
AMMOD(const AMMOD&) = delete;
AMMOD& operator=(const AMMOD& other) = delete;
~AMMOD() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetAMCarrierLevel (TXA& txa, float c_level);
void setAMCarrierLevel(double c_level);
};
} // namespace WDSP

View File

@ -81,13 +81,12 @@ ANB::ANB (
hangtime(_hangtime),
advtime(_advtime),
backtau(_backtau),
threshold(_threshold)
threshold(_threshold),
dtime(0),
htime(0),
itime(0),
atime(0)
{
dtime = 0;
htime = 0;
itime = 0;
atime = 0;
if (tau < 0.0) {
tau = 0.0;
} else if (tau > MAX_TAU) {

View File

@ -65,6 +65,7 @@ ANF::ANF(
delay(_delay),
two_mu(_two_mu),
gamma(_gamma),
in_idx(0),
lidx(_lidx),
lidx_min(_lidx_min),
lidx_max(_lidx_max),
@ -73,7 +74,6 @@ ANF::ANF(
lincr(_lincr),
ldecr(_ldecr)
{
in_idx = 0;
std::fill(d.begin(), d.end(), 0);
std::fill(w.begin(), w.end(), 0);
}

View File

@ -30,138 +30,102 @@ warren@wpratt.com
namespace WDSP {
BLDR* BLDR::create_builder(int points, int ints)
BLDR::BLDR(int points, int ints)
{
// for the create function, 'points' and 'ints' are the MAXIMUM values that will be encountered
BLDR *a = new BLDR;
a->catxy = new float[2 * points]; // (float*)malloc0(2 * points * sizeof(float));
a->sx = new float[points]; // (float*)malloc0( points * sizeof(float));
a->sy = new float[points]; // (float*)malloc0( points * sizeof(float));
a->h = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->p = new int[ints]; // (int*) malloc0( ints * sizeof(int));
a->np = new int[ints]; // (int*) malloc0( ints * sizeof(int));
a->taa = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tab = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tag = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tad = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tbb = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tbg = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tbd = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tgg = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tgd = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tdd = new float[ints]; // (float*)malloc0( ints * sizeof(float));
catxy = new double[2 * points];
sx.resize(points);
sy.resize(points);
h .resize(ints);
p.resize(ints);
np.resize(ints);
taa.resize(ints);
tab.resize(ints);
tag.resize(ints);
tad.resize(ints);
tbb.resize(ints);
tbg.resize(ints);
tbd.resize(ints);
tgg.resize(ints);
tgd.resize(ints);
tdd.resize(ints);
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
a->A = new float[intp1 * intp1]; // (float*)malloc0(intp1 * intp1 * sizeof(float));
a->B = new float[intp1 * intp1]; // (float*)malloc0(intp1 * intp1 * sizeof(float));
a->C = new float[intp1 * intp1]; // (float*)malloc0(intm1 * intp1 * sizeof(float));
a->D = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->E = new float[intp1 * intp1]; // (float*)malloc0(intp1 * intp1 * sizeof(float));
a->F = new float[intm1 * intp1]; // (float*)malloc0(intm1 * intp1 * sizeof(float));
a->G = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->MAT = new float[nsize * nsize]; // (float*)malloc0(nsize * nsize * sizeof(float));
a->RHS = new float[nsize]; // (float*)malloc0(nsize * sizeof(float));
a->SLN = new float[nsize]; // (float*)malloc0(nsize * sizeof(float));
a->z = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->zp = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->wrk = new float[nsize]; // (float*)malloc0(nsize * sizeof(float));
a->ipiv = new int[nsize]; // (int*) malloc0(nsize * sizeof(int));
return a;
A .resize(intp1 * intp1);
B .resize(intp1 * intp1);
C .resize(intp1 * intp1);
D .resize(intp1);
E .resize(intp1 * intp1);
F .resize(intm1 * intp1);
G .resize(intp1);
MAT.resize(nsize * nsize);
RHS.resize(nsize);
SLN.resize(nsize);
z .resize(intp1);
zp.resize(intp1);
wrk.resize(nsize);
ipiv.resize(nsize);
}
void BLDR::destroy_builder(BLDR *a)
BLDR::~BLDR()
{
delete[](a->ipiv);
delete[](a->wrk);
delete[](a->catxy);
delete[](a->sx);
delete[](a->sy);
delete[](a->h);
delete[](a->p);
delete[](a->np);
delete[](a->taa);
delete[](a->tab);
delete[](a->tag);
delete[](a->tad);
delete[](a->tbb);
delete[](a->tbg);
delete[](a->tbd);
delete[](a->tgg);
delete[](a->tgd);
delete[](a->tdd);
delete[](a->A);
delete[](a->B);
delete[](a->C);
delete[](a->D);
delete[](a->E);
delete[](a->F);
delete[](a->G);
delete[](a->MAT);
delete[](a->RHS);
delete[](a->SLN);
delete[](a->z);
delete[](a->zp);
delete(a);
delete[]catxy;
}
void BLDR::flush_builder(BLDR *a, int points, int ints)
void BLDR::flush(int points)
{
memset(a->catxy, 0, 2 * points * sizeof(float));
memset(a->sx, 0, points * sizeof(float));
memset(a->sy, 0, points * sizeof(float));
memset(a->h, 0, ints * sizeof(float));
memset(a->p, 0, ints * sizeof(int));
memset(a->np, 0, ints * sizeof(int));
memset(a->taa, 0, ints * sizeof(float));
memset(a->tab, 0, ints * sizeof(float));
memset(a->tag, 0, ints * sizeof(float));
memset(a->tad, 0, ints * sizeof(float));
memset(a->tbb, 0, ints * sizeof(float));
memset(a->tbg, 0, ints * sizeof(float));
memset(a->tbd, 0, ints * sizeof(float));
memset(a->tgg, 0, ints * sizeof(float));
memset(a->tgd, 0, ints * sizeof(float));
memset(a->tdd, 0, ints * sizeof(float));
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
memset(a->A, 0, intp1 * intp1 * sizeof(float));
memset(a->B, 0, intp1 * intp1 * sizeof(float));
memset(a->C, 0, intm1 * intp1 * sizeof(float));
memset(a->D, 0, intp1 * sizeof(float));
memset(a->E, 0, intp1 * intp1 * sizeof(float));
memset(a->F, 0, intm1 * intp1 * sizeof(float));
memset(a->G, 0, intp1 * sizeof(float));
memset(a->MAT, 0, nsize * nsize * sizeof(float));
memset(a->RHS, 0, nsize * sizeof(float));
memset(a->SLN, 0, nsize * sizeof(float));
memset(a->z, 0, intp1 * sizeof(float));
memset(a->zp, 0, intp1 * sizeof(float));
memset(a->wrk, 0, nsize * sizeof(float));
memset(a->ipiv, 0, nsize * sizeof(int));
memset(catxy, 0, 2 * points * sizeof(double));
std::fill(sx.begin(), sx.end(), 0);
std::fill(sy.begin(), sy.end(), 0);
std::fill(h.begin(), h.end(), 0);
std::fill(p.begin(), p.end(), 0);
std::fill(np.begin(), np.end(), 0);
std::fill(taa.begin(), taa.end(), 0);
std::fill(tab.begin(), tab.end(), 0);
std::fill(tag.begin(), tag.end(), 0);
std::fill(tad.begin(), tad.end(), 0);
std::fill(tbb.begin(), tbb.end(), 0);
std::fill(tbg.begin(), tbg.end(), 0);
std::fill(tbd.begin(), tbd.end(), 0);
std::fill(tgg.begin(), tgg.end(), 0);
std::fill(tgd.begin(), tgd.end(), 0);
std::fill(tdd.begin(), tdd.end(), 0);
std::fill(A.begin(), A.end(), 0);
std::fill(B.begin(), B.end(), 0);
std::fill(C.begin(), C.end(), 0);
std::fill(D.begin(), D.end(), 0);
std::fill(E.begin(), E.end(), 0);
std::fill(F.begin(), F.end(), 0);
std::fill(G.begin(), G.end(), 0);
std::fill(MAT.begin(), MAT.end(), 0);
std::fill(RHS.begin(), RHS.end(), 0);
std::fill(SLN.begin(), SLN.end(), 0);
std::fill(z.begin(), z.end(), 0);
std::fill(zp.begin(), zp.end(), 0);
std::fill(wrk.begin(), wrk.end(), 0);
std::fill(ipiv.begin(), ipiv.end(), 0);
}
int BLDR::fcompare(const void* a, const void* b)
{
if (*(float*)a < *(float*)b)
if (*(double*)a < *(double*)b)
return -1;
else if (*(float*)a == *(float*)b)
else if (*(double*)a == *(double*)b)
return 0;
else
return 1;
}
void BLDR::decomp(int n, float* a, int* piv, int* info, float* wrk)
void BLDR::decomp(int n, std::vector<double>& a, std::vector<int>& piv, int* info, std::vector<double>& wrk)
{
int i, j, k;
int i;
int j;
int t_piv;
float m_row, mt_row, m_col, mt_col;
double m_row;
double mt_row;
double m_col;
double mt_col;
*info = 0;
for (i = 0; i < n; i++)
{
@ -180,7 +144,7 @@ void BLDR::decomp(int n, float* a, int* piv, int* info, float* wrk)
}
wrk[i] = m_row;
}
for (k = 0; k < n - 1; k++)
for (int k = 0; k < n - 1; k++)
{
j = k;
m_col = a[n * piv[k] + k] / wrk[piv[k]];
@ -216,10 +180,11 @@ cleanup:
return;
}
void BLDR::dsolve(int n, float* a, int* piv, float* b, float* x)
void BLDR::dsolve(int n, std::vector<double>& a, std::vector<int>& piv, std::vector<double>& b, std::vector<double>& x)
{
int j, k;
float sum;
int j;
int k;
double sum;
for (k = 0; k < n; k++)
{
@ -238,7 +203,7 @@ void BLDR::dsolve(int n, float* a, int* piv, float* b, float* x)
}
}
void BLDR::cull(int* n, int ints, float* x, float* t, float ptol)
void BLDR::cull(int* n, int ints, std::vector<double>& x, const double* t, double ptol)
{
int k = 0;
int i = *n;
@ -255,28 +220,36 @@ void BLDR::cull(int* n, int ints, float* x, float* t, float ptol)
*n -= k;
}
void BLDR::xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t, int* info, float* c, float ptol)
void BLDR::execute(int points, const double* x, const double* y, int ints, const double* t, int* info, double* c, double ptol)
{
float u, v, alpha, beta, gamma, delta;
double u;
double v;
double alpha;
double beta;
double gamma;
double delta;
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
int i, j, k, m;
int i;
int j;
int k;
int m;
int dinfo;
flush_builder(a, points, ints);
flush(points);
for (i = 0; i < points; i++)
{
a->catxy[2 * i + 0] = x[i];
a->catxy[2 * i + 1] = y[i];
catxy[2 * i + 0] = x[i];
catxy[2 * i + 1] = y[i];
}
qsort(a->catxy, points, 2 * sizeof(float), fcompare);
qsort(catxy, points, 2 * sizeof(double), fcompare);
for (i = 0; i < points; i++)
{
a->sx[i] = a->catxy[2 * i + 0];
a->sy[i] = a->catxy[2 * i + 1];
sx[i] = catxy[2 * i + 0];
sy[i] = catxy[2 * i + 1];
}
cull(&points, ints, a->sx, t, ptol);
if (points <= 0 || a->sx[points - 1] > t[ints])
cull(&points, ints, sx, t, ptol);
if (points <= 0 || sx[points - 1] > t[ints])
{
*info = -1000;
goto cleanup;
@ -284,101 +257,101 @@ void BLDR::xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t,
else *info = 0;
for (j = 0; j < ints; j++)
a->h[j] = t[j + 1] - t[j];
a->p[0] = 0;
h[j] = t[j + 1] - t[j];
p[0] = 0;
j = 0;
for (i = 0; i < points; i++)
{
if (a->sx[i] <= t[j + 1])
a->np[j]++;
if (sx[i] <= t[j + 1])
np[j]++;
else
{
a->p[++j] = i;
while (a->sx[i] > t[j + 1])
a->p[++j] = i;
a->np[j] = 1;
p[++j] = i;
while (sx[i] > t[j + 1])
p[++j] = i;
np[j] = 1;
}
}
for (i = 0; i < ints; i++)
for (j = a->p[i]; j < a->p[i] + a->np[i]; j++)
for (j = p[i]; j < p[i] + np[i]; j++)
{
u = (a->sx[j] - t[i]) / a->h[i];
u = (sx[j] - t[i]) / h[i];
v = u - 1.0;
alpha = (2.0 * u + 1.0) * v * v;
beta = u * u * (1.0 - 2.0 * v);
gamma = a->h[i] * u * v * v;
delta = a->h[i] * u * u * v;
a->taa[i] += alpha * alpha;
a->tab[i] += alpha * beta;
a->tag[i] += alpha * gamma;
a->tad[i] += alpha * delta;
a->tbb[i] += beta * beta;
a->tbg[i] += beta * gamma;
a->tbd[i] += beta * delta;
a->tgg[i] += gamma * gamma;
a->tgd[i] += gamma * delta;
a->tdd[i] += delta * delta;
a->D[i + 0] += 2.0 * a->sy[j] * alpha;
a->D[i + 1] += 2.0 * a->sy[j] * beta;
a->G[i + 0] += 2.0 * a->sy[j] * gamma;
a->G[i + 1] += 2.0 * a->sy[j] * delta;
gamma = h[i] * u * v * v;
delta = h[i] * u * u * v;
taa[i] += alpha * alpha;
tab[i] += alpha * beta;
tag[i] += alpha * gamma;
tad[i] += alpha * delta;
tbb[i] += beta * beta;
tbg[i] += beta * gamma;
tbd[i] += beta * delta;
tgg[i] += gamma * gamma;
tgd[i] += gamma * delta;
tdd[i] += delta * delta;
D[i + 0] += 2.0 * sy[j] * alpha;
D[i + 1] += 2.0 * sy[j] * beta;
G[i + 0] += 2.0 * sy[j] * gamma;
G[i + 1] += 2.0 * sy[j] * delta;
}
for (i = 0; i < ints; i++)
{
a->A[(i + 0) * intp1 + (i + 0)] += 2.0 * a->taa[i];
a->A[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tbb[i];
a->A[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tab[i];
a->A[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tab[i];
a->B[(i + 0) * intp1 + (i + 0)] += 2.0 * a->tag[i];
a->B[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tbd[i];
a->B[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tbg[i];
a->B[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tad[i];
a->E[(i + 0) * intp1 + (i + 0)] += 2.0 * a->tgg[i];
a->E[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tdd[i];
a->E[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tgd[i];
a->E[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tgd[i];
A[(i + 0) * intp1 + (i + 0)] += 2.0 * taa[i];
A[(i + 1) * intp1 + (i + 1)] = 2.0 * tbb[i];
A[(i + 0) * intp1 + (i + 1)] = 2.0 * tab[i];
A[(i + 1) * intp1 + (i + 0)] = 2.0 * tab[i];
B[(i + 0) * intp1 + (i + 0)] += 2.0 * tag[i];
B[(i + 1) * intp1 + (i + 1)] = 2.0 * tbd[i];
B[(i + 0) * intp1 + (i + 1)] = 2.0 * tbg[i];
B[(i + 1) * intp1 + (i + 0)] = 2.0 * tad[i];
E[(i + 0) * intp1 + (i + 0)] += 2.0 * tgg[i];
E[(i + 1) * intp1 + (i + 1)] = 2.0 * tdd[i];
E[(i + 0) * intp1 + (i + 1)] = 2.0 * tgd[i];
E[(i + 1) * intp1 + (i + 0)] = 2.0 * tgd[i];
}
for (i = 0; i < intm1; i++)
{
a->C[i * intp1 + (i + 0)] = +3.0 * a->h[i + 1] / a->h[i];
a->C[i * intp1 + (i + 2)] = -3.0 * a->h[i] / a->h[i + 1];
a->C[i * intp1 + (i + 1)] = -a->C[i * intp1 + (i + 0)] - a->C[i * intp1 + (i + 2)];
a->F[i * intp1 + (i + 0)] = a->h[i + 1];
a->F[i * intp1 + (i + 1)] = 2.0 * (a->h[i] + a->h[i + 1]);
a->F[i * intp1 + (i + 2)] = a->h[i];
C[i * intp1 + (i + 0)] = +3.0 * h[i + 1] / h[i];
C[i * intp1 + (i + 2)] = -3.0 * h[i] / h[i + 1];
C[i * intp1 + (i + 1)] = -C[i * intp1 + (i + 0)] - C[i * intp1 + (i + 2)];
F[i * intp1 + (i + 0)] = h[i + 1];
F[i * intp1 + (i + 1)] = 2.0 * (h[i] + h[i + 1]);
F[i * intp1 + (i + 2)] = h[i];
}
for (i = 0, k = 0; i < intp1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->A[i * intp1 + j];
MAT[k * nsize + m] = A[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->B[j * intp1 + i];
MAT[k * nsize + m] = B[j * intp1 + i];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = a->C[j * intp1 + i];
a->RHS[k] = a->D[i];
MAT[k * nsize + m] = C[j * intp1 + i];
RHS[k] = D[i];
}
for (i = 0, k = intp1; i < intp1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->B[i * intp1 + j];
MAT[k * nsize + m] = B[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->E[i * intp1 + j];
MAT[k * nsize + m] = E[i * intp1 + j];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = a->F[j * intp1 + i];
a->RHS[k] = a->G[i];
MAT[k * nsize + m] = F[j * intp1 + i];
RHS[k] = G[i];
}
for (i = 0, k = 2 * intp1; i < intm1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->C[i * intp1 + j];
MAT[k * nsize + m] = C[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->F[i * intp1 + j];
MAT[k * nsize + m] = F[i * intp1 + j];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = 0.0;
a->RHS[k] = 0.0;
MAT[k * nsize + m] = 0.0;
RHS[k] = 0.0;
}
decomp(nsize, a->MAT, a->ipiv, &dinfo, a->wrk);
dsolve(nsize, a->MAT, a->ipiv, a->RHS, a->SLN);
decomp(nsize, MAT, ipiv, &dinfo, wrk);
dsolve(nsize, MAT, ipiv, RHS, SLN);
if (dinfo != 0)
{
*info = dinfo;
@ -387,15 +360,15 @@ void BLDR::xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t,
for (i = 0; i <= ints; i++)
{
a->z[i] = a->SLN[i];
a->zp[i] = a->SLN[i + ints + 1];
z[i] = SLN[i];
zp[i] = SLN[i + ints + 1];
}
for (i = 0; i < ints; i++)
{
c[4 * i + 0] = a->z[i];
c[4 * i + 1] = a->zp[i];
c[4 * i + 2] = -3.0 / (a->h[i] * a->h[i]) * (a->z[i] - a->z[i + 1]) - 1.0 / a->h[i] * (2.0 * a->zp[i] + a->zp[i + 1]);
c[4 * i + 3] = 2.0 / (a->h[i] * a->h[i] * a->h[i]) * (a->z[i] - a->z[i + 1]) + 1.0 / (a->h[i] * a->h[i]) * (a->zp[i] + a->zp[i + 1]);
c[4 * i + 0] = z[i];
c[4 * i + 1] = zp[i];
c[4 * i + 2] = -3.0 / (h[i] * h[i]) * (z[i] - z[i + 1]) - 1.0 / h[i] * (2.0 * zp[i] + zp[i + 1]);
c[4 * i + 3] = 2.0 / (h[i] * h[i] * h[i]) * (z[i] - z[i + 1]) + 1.0 / (h[i] * h[i]) * (zp[i] + zp[i + 1]);
}
cleanup:
return;

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_bldr_h
#define wdsp_bldr_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -35,47 +37,50 @@ namespace WDSP {
class WDSP_API BLDR
{
public:
float* catxy;
float* sx;
float* sy;
float* h;
int* p;
int* np;
float* taa;
float* tab;
float* tag;
float* tad;
float* tbb;
float* tbg;
float* tbd;
float* tgg;
float* tgd;
float* tdd;
float* A;
float* B;
float* C;
float* D;
float* E;
float* F;
float* G;
float* MAT;
float* RHS;
float* SLN;
float* z;
float* zp;
float* wrk;
int* ipiv;
double* catxy;
std::vector<double> sx;
std::vector<double> sy;
std::vector<double> h;
std::vector<int> p;
std::vector<int> np;
std::vector<double> taa;
std::vector<double> tab;
std::vector<double> tag;
std::vector<double> tad;
std::vector<double> tbb;
std::vector<double> tbg;
std::vector<double> tbd;
std::vector<double> tgg;
std::vector<double> tgd;
std::vector<double> tdd;
std::vector<double> A;
std::vector<double> B;
std::vector<double> C;
std::vector<double> D;
std::vector<double> E;
std::vector<double> F;
std::vector<double> G;
std::vector<double> MAT;
std::vector<double> RHS;
std::vector<double> SLN;
std::vector<double> z;
std::vector<double> zp;
std::vector<double> wrk;
std::vector<int> ipiv;
static BLDR* create_builder(int points, int ints);
static void destroy_builder(BLDR *a);
static void flush_builder(BLDR *a, int points, int ints);
static void xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t, int* info, float* c, float ptol);
BLDR(int points, int ints);
BLDR(const BLDR&) = delete;
BLDR& operator=(const BLDR& other) = delete;
~BLDR();
void flush(int points);
void execute(int points, const double* x, const double* y, int ints, const double* t, int* info, double* c, double ptol);
private:
static int fcompare(const void* a, const void* b);
static void decomp(int n, float* a, int* piv, int* info, float* wrk);
static void dsolve(int n, float* a, int* piv, float* b, float* x);
static void cull(int* n, int ints, float* x, float* t, float ptol);
static void decomp(int n, std::vector<double>& a, std::vector<int>& piv, int* info, std::vector<double>& wrk);
static void dsolve(int n, std::vector<double>& a, std::vector<int>& piv, std::vector<double>& b, std::vector<double>& x);
static void cull(int* n, int ints, std::vector<double>& x, const double* t, double ptol);
};
} // namespace WDSP

View File

@ -40,116 +40,116 @@ namespace WDSP {
* *
********************************************************************************************************/
void BPS::calc_bps (BPS *a)
void BPS::calc()
{
float* impulse;
a->infilt = new float[2 * a->size * 2];
a->product = new float[2 * a->size * 2];
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults(2 * a->size, impulse);
a->CFor = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->infilt, (fftwf_complex *)a->product, FFTW_FORWARD, FFTW_PATIENT);
a->CRev = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->product, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
delete[](impulse);
infilt.resize(2 * size * 2);
product.resize(2 * size * 2);
impulse = FIR::fir_bandpass(size + 1, f_low, f_high, samplerate, wintype, 1, 1.0 / (float)(2 * size));
mults = FIR::fftcv_mults(2 * size, impulse);
CFor = fftwf_plan_dft_1d(2 * size, (fftwf_complex *) infilt.data(), (fftwf_complex *) product.data(), FFTW_FORWARD, FFTW_PATIENT);
CRev = fftwf_plan_dft_1d(2 * size, (fftwf_complex *) product.data(), (fftwf_complex *) out, FFTW_BACKWARD, FFTW_PATIENT);
delete[]impulse;
}
void BPS::decalc_bps (BPS *a)
void BPS::decalc()
{
fftwf_destroy_plan(a->CRev);
fftwf_destroy_plan(a->CFor);
delete[] (a->mults);
delete[] (a->product);
delete[] (a->infilt);
fftwf_destroy_plan(CRev);
fftwf_destroy_plan(CFor);
delete[] mults;
}
BPS* BPS::create_bps (
int run,
int position,
int size,
float* in,
float* out,
float f_low,
float f_high,
int samplerate,
int wintype,
float gain
)
BPS::BPS(
int _run,
int _position,
int _size,
float* _in,
float* _out,
double _f_low,
double _f_high,
int _samplerate,
int _wintype,
double _gain
) :
run(_run),
position(_position),
size(_size),
in(_in),
out(_out),
f_low(_f_low),
f_high(_f_high),
samplerate((double) _samplerate),
wintype(_wintype),
gain(_gain)
{
BPS *a = new BPS;
a->run = run;
a->position = position;
a->size = size;
a->samplerate = (float)samplerate;
a->wintype = wintype;
a->gain = gain;
a->in = in;
a->out = out;
a->f_low = f_low;
a->f_high = f_high;
calc_bps (a);
return a;
calc();
}
void BPS::destroy_bps (BPS *a)
BPS::~BPS()
{
decalc_bps (a);
delete a;
decalc();
}
void BPS::flush_bps (BPS *a)
void BPS::flush()
{
std::fill(a->infilt, a->infilt + 2 * a->size * 2, 0);
std::fill(infilt.begin(), infilt.end(), 0);
}
void BPS::xbps (BPS *a, int pos)
void BPS::execute(int pos)
{
int i;
float I, Q;
if (a->run && pos == a->position)
double I;
double Q;
if (run && pos == position)
{
std::copy(a->in, a->in + a->size * 2, &(a->infilt[2 * a->size]));
fftwf_execute (a->CFor);
for (i = 0; i < 2 * a->size; i++)
std::copy(in, in + size * 2, &(infilt[2 * size]));
fftwf_execute (CFor);
for (int i = 0; i < 2 * size; i++)
{
I = a->gain * a->product[2 * i + 0];
Q = a->gain * a->product[2 * i + 1];
a->product[2 * i + 0] = I * a->mults[2 * i + 0] - Q * a->mults[2 * i + 1];
a->product[2 * i + 1] = I * a->mults[2 * i + 1] + Q * a->mults[2 * i + 0];
I = gain * product[2 * i + 0];
Q = gain * product[2 * i + 1];
product[2 * i + 0] = (float) (I * mults[2 * i + 0] - Q * mults[2 * i + 1]);
product[2 * i + 1] = (float) (I * mults[2 * i + 1] + Q * mults[2 * i + 0]);
}
fftwf_execute (a->CRev);
std::copy(&(a->infilt[2 * a->size]), &(a->infilt[2 * a->size]) + a->size * 2, a->infilt);
fftwf_execute (CRev);
std::copy(&(infilt[2 * size]), &(infilt[2 * size]) + size * 2, infilt.begin());
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void BPS::setBuffers_bps (BPS *a, float* in, float* out)
void BPS::setBuffers(float* _in, float* _out)
{
decalc_bps (a);
a->in = in;
a->out = out;
calc_bps (a);
decalc();
in = _in;
out = _out;
calc();
}
void BPS::setSamplerate_bps (BPS *a, int rate)
void BPS::setSamplerate(int rate)
{
decalc_bps (a);
a->samplerate = rate;
calc_bps (a);
decalc();
samplerate = rate;
calc();
}
void BPS::setSize_bps (BPS *a, int size)
void BPS::setSize(int _size)
{
decalc_bps (a);
a->size = size;
calc_bps (a);
decalc();
size = _size;
calc();
}
void BPS::setFreqs_bps (BPS *a, float f_low, float f_high)
void BPS::setFreqs(double _f_low, double _f_high)
{
decalc_bps (a);
a->f_low = f_low;
a->f_high = f_high;
calc_bps (a);
decalc();
f_low = _f_low;
f_high = _f_high;
calc();
}
void BPS::setRun(int _run)
{
run = _run;
}
/********************************************************************************************************
@ -158,132 +158,4 @@ void BPS::setFreqs_bps (BPS *a, float f_low, float f_high)
* *
********************************************************************************************************/
void BPS::SetBPSRun (RXA& rxa, int run)
{
rxa.bp1->run = run;
}
void BPS::SetBPSFreqs (RXA& rxa, float f_low, float f_high)
{
float* impulse;
BPS *a1;
a1 = rxa.bps1;
if ((f_low != a1->f_low) || (f_high != a1->f_high))
{
a1->f_low = f_low;
a1->f_high = f_high;
delete[] (a1->mults);
impulse = FIR::fir_bandpass(a1->size + 1, f_low, f_high, a1->samplerate, a1->wintype, 1, 1.0 / (float)(2 * a1->size));
a1->mults = FIR::fftcv_mults (2 * a1->size, impulse);
delete[] (impulse);
}
}
void BPS::SetBPSWindow (RXA& rxa, int wintype)
{
float* impulse;
BPS *a1;
a1 = rxa.bps1;
if ((a1->wintype != wintype))
{
a1->wintype = wintype;
delete[] (a1->mults);
impulse = FIR::fir_bandpass(a1->size + 1, a1->f_low, a1->f_high, a1->samplerate, a1->wintype, 1, 1.0 / (float)(2 * a1->size));
a1->mults = FIR::fftcv_mults (2 * a1->size, impulse);
delete[] (impulse);
}
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
// UNCOMMENT properties when pointers in place in txa
void BPS::SetBPSRun (TXA& txa, int run)
{
txa.bp1->run = run;
}
void BPS::SetBPSFreqs (TXA& txa, float f_low, float f_high)
{
float* impulse;
BPS *a;
a = txa.bps0;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
}
void BPS::SetBPSWindow (TXA& txa, int wintype)
{
float* impulse;
BPS *a;
a = txa.bps0;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass (a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
}
} // namespace WDSP

View File

@ -34,6 +34,8 @@ warren@wpratt.com
#ifndef wdsp_bps_h
#define wdsp_bps_h
#include <vector>
#include "fftw3.h"
#include "export.h"
@ -50,48 +52,44 @@ public:
int size;
float* in;
float* out;
float f_low;
float f_high;
float* infilt;
float* product;
double f_low;
double f_high;
std::vector<float> infilt;
std::vector<float> product;
float* mults;
float samplerate;
double samplerate;
int wintype;
float gain;
double gain;
fftwf_plan CFor;
fftwf_plan CRev;
static BPS* create_bps (
BPS(
int run,
int position,
int size,
float* in,
float* out,
float f_low,
float f_high,
double f_low,
double f_high,
int samplerate,
int wintype,
float gain
double gain
);
static void destroy_bps (BPS *a);
static void flush_bps (BPS *a);
static void xbps (BPS *a, int pos);
static void setBuffers_bps (BPS *a, float* in, float* out);
static void setSamplerate_bps (BPS *a, int rate);
static void setSize_bps (BPS *a, int size);
static void setFreqs_bps (BPS *a, float f_low, float f_high);
// RXA Prototypes
static void SetBPSRun (RXA& rxa, int run);
static void SetBPSFreqs (RXA& rxa, float low, float high);
static void SetBPSWindow (RXA& rxa, int wintype);
// TXA Prototypes
static void SetBPSRun (TXA& txa, int run);
static void SetBPSFreqs (TXA& txa, float low, float high);
static void SetBPSWindow (TXA& txa, int wintype);
BPS(const BPS&) = delete;
BPS& operator=(const BPS& other) = delete;
~BPS();
void flush();
void execute(int pos);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
void setFreqs(double f_low, double f_high);
void setRun(int run);
private:
static void calc_bps (BPS *a);
static void decalc_bps (BPS *a);
void calc();
void decalc();
};
} // namespace WDSP

View File

@ -38,7 +38,14 @@ namespace WDSP {
void BQBP::calc()
{
double f0, w0, bw, q, sn, cs, c, den;
double f0;
double w0;
double bw;
double q;
double sn;
double cs;
double c;
double den;
bw = f_high - f_low;
f0 = (f_high + f_low) / 2.0;
@ -99,15 +106,13 @@ void BQBP::execute()
{
if (run)
{
int i, j, n;
for (i = 0; i < size; i++)
for (int i = 0; i < size; i++)
{
for (j = 0; j < 2; j++)
for (int j = 0; j < 2; j++)
{
x0[j] = gain * in[2 * i + j];
for (n = 0; n < nstages; n++)
for (int n = 0; n < nstages; n++)
{
if (n > 0)
x0[2 * n + j] = y0[2 * (n - 1) + j];
@ -123,7 +128,7 @@ void BQBP::execute()
x1[2 * n + j] = x0[2 * n + j];
}
out[2 * i + j] = y0[2 * (nstages - 1) + j];
out[2 * i + j] = (float) y0[2 * (nstages - 1) + j];
}
}
}

View File

@ -38,9 +38,12 @@ namespace WDSP {
void BQLP::calc()
{
double w0, cs, c, den;
double w0;
double cs;
double c;
double den;
w0 = TWOPI * fc / (double)rate;
w0 = TWOPI * fc / rate;
cs = cos(w0);
c = sin(w0) / (2.0 * Q);
den = 1.0 + c;
@ -95,15 +98,14 @@ void BQLP::execute()
{
if (run)
{
int i, j, n;
for (i = 0; i < size; i++)
for (int i = 0; i < size; i++)
{
for (j = 0; j < 2; j++)
for (int j = 0; j < 2; j++)
{
x0[j] = gain * in[2 * i + j];
for (n = 0; n < nstages; n++)
for (int n = 0; n < nstages; n++)
{
if (n > 0)
x0[2 * n + j] = y0[2 * (n - 1) + j];
@ -118,7 +120,7 @@ void BQLP::execute()
x1[2 * n + j] = x0[2 * n + j];
}
out[2 * i + j] = y0[2 * (nstages - 1) + j];
out[2 * i + j] = (float) y0[2 * (nstages - 1) + j];
}
}
}

View File

@ -52,8 +52,17 @@ public:
double Q;
double gain;
int nstages;
double a0, a1, a2, b1, b2;
std::vector<double> x0, x1, x2, y0, y1, y2;
double a0;
double a1;
double a2;
double b1;
double b2;
std::vector<double> x0;
std::vector<double> x1;
std::vector<double> x2;
std::vector<double> y0;
std::vector<double> y1;
std::vector<double> y2;
BQLP(
int run,

View File

@ -47,15 +47,15 @@ CBL::CBL(
int _mode,
int _sample_rate,
double _tau
)
) :
run(_run),
buff_size(_buff_size),
in_buff(_in_buff),
out_buff(_out_buff),
mode(_mode),
sample_rate((double) _sample_rate),
tau(_tau)
{
run = _run;
buff_size = _buff_size;
in_buff = _in_buff;
out_buff = _out_buff;
mode = _mode;
sample_rate = (double) _sample_rate;
tau = _tau;
calc();
}

View File

@ -32,381 +32,384 @@ warren@wpratt.com
namespace WDSP {
void CFCOMP::calc_cfcwindow (CFCOMP *a)
void CFCOMP::calc_cfcwindow()
{
int i;
float arg0, arg1, cgsum, igsum, coherent_gain, inherent_power_gain, wmult;
switch (a->wintype)
double arg0;
double arg1;
double cgsum;
double igsum;
double coherent_gain;
double inherent_power_gain;
double wmult;
switch (wintype)
{
case 0:
arg0 = 2.0 * PI / (float)a->fsize;
arg0 = 2.0 * PI / (float)fsize;
cgsum = 0.0;
igsum = 0.0;
for (i = 0; i < a->fsize; i++)
for (i = 0; i < fsize; i++)
{
a->window[i] = sqrt (0.54 - 0.46 * cos((float)i * arg0));
cgsum += a->window[i];
igsum += a->window[i] * a->window[i];
window[i] = sqrt (0.54 - 0.46 * cos((float)i * arg0));
cgsum += window[i];
igsum += window[i] * window[i];
}
coherent_gain = cgsum / (float)a->fsize;
inherent_power_gain = igsum / (float)a->fsize;
coherent_gain = cgsum / (float)fsize;
inherent_power_gain = igsum / (float)fsize;
wmult = 1.0 / sqrt (inherent_power_gain);
for (i = 0; i < a->fsize; i++)
a->window[i] *= wmult;
a->winfudge = sqrt (1.0 / coherent_gain);
for (i = 0; i < fsize; i++)
window[i] *= wmult;
winfudge = sqrt (1.0 / coherent_gain);
break;
case 1:
arg0 = 2.0 * PI / (float)a->fsize;
arg0 = 2.0 * PI / (float)fsize;
cgsum = 0.0;
igsum = 0.0;
for (i = 0; i < a->fsize; i++)
for (i = 0; i < fsize; i++)
{
arg1 = cos(arg0 * (float)i);
a->window[i] = sqrt (+0.21747
window[i] = sqrt (+0.21747
+ arg1 * (-0.45325
+ arg1 * (+0.28256
+ arg1 * (-0.04672))));
cgsum += a->window[i];
igsum += a->window[i] * a->window[i];
cgsum += window[i];
igsum += window[i] * window[i];
}
coherent_gain = cgsum / (float)a->fsize;
inherent_power_gain = igsum / (float)a->fsize;
coherent_gain = cgsum / (float)fsize;
inherent_power_gain = igsum / (float)fsize;
wmult = 1.0 / sqrt (inherent_power_gain);
for (i = 0; i < a->fsize; i++)
a->window[i] *= wmult;
a->winfudge = sqrt (1.0 / coherent_gain);
for (i = 0; i < fsize; i++)
window[i] *= wmult;
winfudge = sqrt (1.0 / coherent_gain);
break;
default:
break;
}
}
int CFCOMP::fCOMPcompare (const void *a, const void *b)
{
if (*(float*)a < *(float*)b)
if (*(double*)a < *(double*)b)
return -1;
else if (*(float*)a == *(float*)b)
else if (*(double*)a == *(double*)b)
return 0;
else
return 1;
}
void CFCOMP::calc_comp (CFCOMP *a)
void CFCOMP::calc_comp()
{
int i, j;
float f, frac, fincr, fmax;
float* sary;
a->precomplin = pow (10.0, 0.05 * a->precomp);
a->prepeqlin = pow (10.0, 0.05 * a->prepeq);
fmax = 0.5 * a->rate;
for (i = 0; i < a->nfreqs; i++)
int i;
int j;
double f;
double frac;
double fincr;
double fmax;
double* sary;
precomplin = pow (10.0, 0.05 * precomp);
prepeqlin = pow (10.0, 0.05 * prepeq);
fmax = 0.5 * rate;
for (i = 0; i < nfreqs; i++)
{
a->F[i] = std::max (a->F[i], 0.0f);
a->F[i] = std::min (a->F[i], fmax);
a->G[i] = std::max (a->G[i], 0.0f);
F[i] = std::max (F[i], 0.0);
F[i] = std::min (F[i], fmax);
G[i] = std::max (G[i], 0.0);
}
sary = new float[3 * a->nfreqs]; // (float *)malloc0 (3 * a->nfreqs * sizeof (float));
for (i = 0; i < a->nfreqs; i++)
sary = new double[3 * nfreqs];
for (i = 0; i < nfreqs; i++)
{
sary[3 * i + 0] = a->F[i];
sary[3 * i + 1] = a->G[i];
sary[3 * i + 2] = a->E[i];
sary[3 * i + 0] = F[i];
sary[3 * i + 1] = G[i];
sary[3 * i + 2] = E[i];
}
qsort (sary, a->nfreqs, 3 * sizeof (float), fCOMPcompare);
for (i = 0; i < a->nfreqs; i++)
qsort (sary, nfreqs, 3 * sizeof (float), fCOMPcompare);
for (i = 0; i < nfreqs; i++)
{
a->F[i] = sary[3 * i + 0];
a->G[i] = sary[3 * i + 1];
a->E[i] = sary[3 * i + 2];
F[i] = sary[3 * i + 0];
G[i] = sary[3 * i + 1];
E[i] = sary[3 * i + 2];
}
a->fp[0] = 0.0;
a->fp[a->nfreqs + 1] = fmax;
a->gp[0] = a->G[0];
a->gp[a->nfreqs + 1] = a->G[a->nfreqs - 1];
a->ep[0] = a->E[0]; // cutoff?
a->ep[a->nfreqs + 1] = a->E[a->nfreqs - 1]; // cutoff?
for (i = 0, j = 1; i < a->nfreqs; i++, j++)
fp[0] = 0.0;
fp[nfreqs + 1] = fmax;
gp[0] = G[0];
gp[nfreqs + 1] = G[nfreqs - 1];
ep[0] = E[0]; // cutoff?
ep[nfreqs + 1] = E[nfreqs - 1]; // cutoff?
for (i = 0, j = 1; i < nfreqs; i++, j++)
{
a->fp[j] = a->F[i];
a->gp[j] = a->G[i];
a->ep[j] = a->E[i];
fp[j] = F[i];
gp[j] = G[i];
ep[j] = E[i];
}
fincr = a->rate / (float)a->fsize;
fincr = rate / (float)fsize;
j = 0;
// print_impulse ("gp.txt", a->nfreqs+2, a->gp, 0, 0);
for (i = 0; i < a->msize; i++)
for (i = 0; i < msize; i++)
{
f = fincr * (float)i;
while (f >= a->fp[j + 1] && j < a->nfreqs) j++;
frac = (f - a->fp[j]) / (a->fp[j + 1] - a->fp[j]);
a->comp[i] = pow (10.0, 0.05 * (frac * a->gp[j + 1] + (1.0 - frac) * a->gp[j]));
a->peq[i] = pow (10.0, 0.05 * (frac * a->ep[j + 1] + (1.0 - frac) * a->ep[j]));
a->cfc_gain[i] = a->precomplin * a->comp[i];
while (f >= fp[j + 1] && j < nfreqs) j++;
frac = (f - fp[j]) / (fp[j + 1] - fp[j]);
comp[i] = pow (10.0, 0.05 * (frac * gp[j + 1] + (1.0 - frac) * gp[j]));
peq[i] = pow (10.0, 0.05 * (frac * ep[j + 1] + (1.0 - frac) * ep[j]));
cfc_gain[i] = precomplin * comp[i];
}
// print_impulse ("comp.txt", a->msize, a->comp, 0, 0);
delete[] sary;
}
void CFCOMP::calc_cfcomp(CFCOMP *a)
void CFCOMP::calc_cfcomp()
{
int i;
a->incr = a->fsize / a->ovrlp;
if (a->fsize > a->bsize)
a->iasize = a->fsize;
incr = fsize / ovrlp;
if (fsize > bsize)
iasize = fsize;
else
a->iasize = a->bsize + a->fsize - a->incr;
a->iainidx = 0;
a->iaoutidx = 0;
if (a->fsize > a->bsize)
iasize = bsize + fsize - incr;
iainidx = 0;
iaoutidx = 0;
if (fsize > bsize)
{
if (a->bsize > a->incr) a->oasize = a->bsize;
else a->oasize = a->incr;
a->oainidx = (a->fsize - a->bsize - a->incr) % a->oasize;
if (bsize > incr) oasize = bsize;
else oasize = incr;
oainidx = (fsize - bsize - incr) % oasize;
}
else
{
a->oasize = a->bsize;
a->oainidx = a->fsize - a->incr;
oasize = bsize;
oainidx = fsize - incr;
}
a->init_oainidx = a->oainidx;
a->oaoutidx = 0;
a->msize = a->fsize / 2 + 1;
a->window = new float[a->fsize]; // (float *)malloc0 (a->fsize * sizeof(float));
a->inaccum = new float[a->iasize]; // (float *)malloc0 (a->iasize * sizeof(float));
a->forfftin = new float[a->fsize]; // (float *)malloc0 (a->fsize * sizeof(float));
a->forfftout = new float[a->msize * 2]; // (float *)malloc0 (a->msize * sizeof(complex));
a->cmask = new float[a->msize]; // (float *)malloc0 (a->msize * sizeof(float));
a->mask = new float[a->msize]; // (float *)malloc0 (a->msize * sizeof(float));
a->cfc_gain = new float[a->msize]; // (float *)malloc0 (a->msize * sizeof(float));
a->revfftin = new float[a->msize * 2]; // (float *)malloc0 (a->msize * sizeof(complex));
a->revfftout = new float[a->fsize]; // (float *)malloc0 (a->fsize * sizeof(float));
a->save = new float*[a->ovrlp]; // (float **)malloc0(a->ovrlp * sizeof(float *));
for (i = 0; i < a->ovrlp; i++)
a->save[i] = new float[a->fsize]; // (float *)malloc0(a->fsize * sizeof(float));
a->outaccum = new float[a->oasize]; // (float *)malloc0(a->oasize * sizeof(float));
a->nsamps = 0;
a->saveidx = 0;
a->Rfor = fftwf_plan_dft_r2c_1d(a->fsize, a->forfftin, (fftwf_complex *)a->forfftout, FFTW_ESTIMATE);
a->Rrev = fftwf_plan_dft_c2r_1d(a->fsize, (fftwf_complex *)a->revfftin, a->revfftout, FFTW_ESTIMATE);
calc_cfcwindow(a);
init_oainidx = oainidx;
oaoutidx = 0;
msize = fsize / 2 + 1;
window.resize(fsize);
inaccum.resize(iasize);
forfftin.resize(fsize);
forfftout.resize(msize * 2);
cmask.resize(msize);
mask.resize(msize);
cfc_gain.resize(msize);
revfftin.resize(msize * 2);
revfftout.resize(fsize);
save.resize(ovrlp);
for (int i = 0; i < ovrlp; i++)
save[i].resize(fsize);
outaccum.resize(oasize);
nsamps = 0;
saveidx = 0;
Rfor = fftwf_plan_dft_r2c_1d(fsize, forfftin.data(), (fftwf_complex *)forfftout.data(), FFTW_ESTIMATE);
Rrev = fftwf_plan_dft_c2r_1d(fsize, (fftwf_complex *)revfftin.data(), revfftout.data(), FFTW_ESTIMATE);
calc_cfcwindow();
a->pregain = (2.0 * a->winfudge) / (float)a->fsize;
a->postgain = 0.5 / ((float)a->ovrlp * a->winfudge);
pregain = (2.0 * winfudge) / (double)fsize;
postgain = 0.5 / ((double)ovrlp * winfudge);
a->fp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->gp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->ep = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->comp = new float[a->msize]; // (float *) malloc0 (a->msize * sizeof (float));
a->peq = new float[a->msize]; // (float *) malloc0 (a->msize * sizeof (float));
calc_comp (a);
fp.resize(nfreqs + 2);
gp.resize(nfreqs + 2);
ep.resize(nfreqs + 2);
comp.resize(msize);
peq.resize(msize);
calc_comp();
a->gain = 0.0;
a->mmult = exp (-1.0 / (a->rate * a->ovrlp * a->mtau));
a->dmult = exp (-(float)a->fsize / (a->rate * a->ovrlp * a->dtau));
gain = 0.0;
mmult = exp (-1.0 / (rate * ovrlp * mtau));
dmult = exp (-(float)fsize / (rate * ovrlp * dtau));
a->delta = new float[a->msize]; // (float*)malloc0 (a->msize * sizeof(float));
a->delta_copy = new float[a->msize]; // (float*)malloc0 (a->msize * sizeof(float));
a->cfc_gain_copy = new float[a->msize]; // (float*)malloc0 (a->msize * sizeof(float));
delta.resize(msize);
delta_copy.resize(msize);
cfc_gain_copy.resize(msize);
}
void CFCOMP::decalc_cfcomp(CFCOMP *a)
void CFCOMP::decalc_cfcomp()
{
fftwf_destroy_plan(Rrev);
fftwf_destroy_plan(Rfor);
}
CFCOMP::CFCOMP(
int _run,
int _position,
int _peq_run,
int _size,
float* _in,
float* _out,
int _fsize,
int _ovrlp,
int _rate,
int _wintype,
int _comp_method,
int _nfreqs,
double _precomp,
double _prepeq,
const double* _F,
const double* _G,
const double* _E,
double _mtau,
double _dtau
) :
run (_run),
position(_position),
bsize(_size),
in(_in),
out(_out),
fsize(_fsize),
ovrlp(_ovrlp),
rate(_rate),
wintype(_wintype),
comp_method(_comp_method),
nfreqs(_nfreqs),
precomp(_precomp),
peq_run(_peq_run),
prepeq(_prepeq),
mtau(_mtau), // compression metering time constant
dtau(_dtau) // compression display time constant
{
F.resize(nfreqs);
G.resize(nfreqs);
E.resize(nfreqs);
std::copy(_F, _F + nfreqs, F.begin());
std::copy(_G, _G + nfreqs, G.begin());
std::copy(_E, _E + nfreqs, E.begin());
calc_cfcomp();
}
CFCOMP::~CFCOMP()
{
decalc_cfcomp();
}
void CFCOMP::flush()
{
std::fill(inaccum.begin(), inaccum.end(), 0);
for (int i = 0; i < ovrlp; i++)
std::fill(save[i].begin(), save[i].end(), 0);
std::fill(outaccum.begin(), outaccum.end(), 0);
nsamps = 0;
iainidx = 0;
iaoutidx = 0;
oainidx = init_oainidx;
oaoutidx = 0;
saveidx = 0;
gain = 0.0;
std::fill(delta.begin(), delta.end(), 0);
}
void CFCOMP::calc_mask()
{
int i;
delete[] (a->cfc_gain_copy);
delete[] (a->delta_copy);
delete[] (a->delta);
delete[] (a->peq);
delete[] (a->comp);
delete[] (a->ep);
delete[] (a->gp);
delete[] (a->fp);
fftwf_destroy_plan(a->Rrev);
fftwf_destroy_plan(a->Rfor);
delete[](a->outaccum);
for (i = 0; i < a->ovrlp; i++)
delete[](a->save[i]);
delete[](a->save);
delete[](a->revfftout);
delete[](a->revfftin);
delete[](a->cfc_gain);
delete[](a->mask);
delete[](a->cmask);
delete[](a->forfftout);
delete[](a->forfftin);
delete[](a->inaccum);
delete[](a->window);
}
CFCOMP* CFCOMP::create_cfcomp (int run, int position, int peq_run, int size, float* in, float* out, int fsize, int ovrlp,
int rate, int wintype, int comp_method, int nfreqs, float precomp, float prepeq, float* F, float* G, float* E, float mtau, float dtau)
{
CFCOMP *a = new CFCOMP;
a->run = run;
a->position = position;
a->peq_run = peq_run;
a->bsize = size;
a->in = in;
a->out = out;
a->fsize = fsize;
a->ovrlp = ovrlp;
a->rate = rate;
a->wintype = wintype;
a->comp_method = comp_method;
a->nfreqs = nfreqs;
a->precomp = precomp;
a->prepeq = prepeq;
a->mtau = mtau; // compression metering time constant
a->dtau = dtau; // compression display time constant
a->F = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->G = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->E = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
memcpy (a->F, F, a->nfreqs * sizeof (float));
memcpy (a->G, G, a->nfreqs * sizeof (float));
memcpy (a->E, E, a->nfreqs * sizeof (float));
calc_cfcomp (a);
return a;
}
void CFCOMP::flush_cfcomp (CFCOMP *a)
{
int i;
memset (a->inaccum, 0, a->iasize * sizeof (float));
for (i = 0; i < a->ovrlp; i++)
memset (a->save[i], 0, a->fsize * sizeof (float));
memset (a->outaccum, 0, a->oasize * sizeof (float));
a->nsamps = 0;
a->iainidx = 0;
a->iaoutidx = 0;
a->oainidx = a->init_oainidx;
a->oaoutidx = 0;
a->saveidx = 0;
a->gain = 0.0;
memset(a->delta, 0, a->msize * sizeof(float));
}
void CFCOMP::destroy_cfcomp (CFCOMP *a)
{
decalc_cfcomp (a);
delete[] (a->E);
delete[] (a->G);
delete[] (a->F);
delete (a);
}
void CFCOMP::calc_mask (CFCOMP *a)
{
int i;
float comp, mask, delta;
switch (a->comp_method)
double _comp;
double _mask;
double _delta;
if (comp_method == 0)
{
case 0:
double mag;
double test;
for (i = 0; i < msize; i++)
{
float mag, test;
for (i = 0; i < a->msize; i++)
{
mag = sqrt (a->forfftout[2 * i + 0] * a->forfftout[2 * i + 0]
+ a->forfftout[2 * i + 1] * a->forfftout[2 * i + 1]);
comp = a->cfc_gain[i];
test = comp * mag;
if (test > 1.0)
mask = 1.0 / mag;
else
mask = comp;
a->cmask[i] = mask;
if (test > a->gain) a->gain = test;
else a->gain = a->mmult * a->gain;
mag = sqrt (forfftout[2 * i + 0] * forfftout[2 * i + 0]
+ forfftout[2 * i + 1] * forfftout[2 * i + 1]);
_comp = cfc_gain[i];
test = _comp * mag;
if (test > 1.0)
_mask = 1.0 / mag;
else
_mask = _comp;
cmask[i] = _mask;
if (test > gain) gain = test;
else gain = mmult * gain;
delta = a->cfc_gain[i] - a->cmask[i];
if (delta > a->delta[i]) a->delta[i] = delta;
else a->delta[i] *= a->dmult;
_delta = cfc_gain[i] - cmask[i];
if (_delta > delta[i]) delta[i] = _delta;
else delta[i] *= dmult;
}
}
if (peq_run)
{
for (i = 0; i < msize; i++)
{
mask[i] = cmask[i] * prepeqlin * peq[i];
}
}
else
std::copy(cmask.begin(), cmask.end(), mask.begin());
mask_ready = 1;
}
void CFCOMP::execute(int pos)
{
if (run && pos == position)
{
int i;
int j;
int k;
int sbuff;
int sbegin;
for (i = 0; i < 2 * bsize; i += 2)
{
inaccum[iainidx] = in[i];
iainidx = (iainidx + 1) % iasize;
}
nsamps += bsize;
while (nsamps >= fsize)
{
for (i = 0, j = iaoutidx; i < fsize; i++, j = (j + 1) % iasize)
forfftin[i] = (float) (pregain * window[i] * inaccum[j]);
iaoutidx = (iaoutidx + incr) % iasize;
nsamps -= incr;
fftwf_execute (Rfor);
calc_mask();
for (i = 0; i < msize; i++)
{
revfftin[2 * i + 0] = (float) (mask[i] * forfftout[2 * i + 0]);
revfftin[2 * i + 1] = (float) (mask[i] * forfftout[2 * i + 1]);
}
break;
}
}
if (a->peq_run)
{
for (i = 0; i < a->msize; i++)
{
a->mask[i] = a->cmask[i] * a->prepeqlin * a->peq[i];
}
}
else
memcpy (a->mask, a->cmask, a->msize * sizeof (float));
// print_impulse ("mask.txt", a->msize, a->mask, 0, 0);
a->mask_ready = 1;
}
void CFCOMP::xcfcomp (CFCOMP *a, int pos)
{
if (a->run && pos == a->position)
{
int i, j, k, sbuff, sbegin;
for (i = 0; i < 2 * a->bsize; i += 2)
{
a->inaccum[a->iainidx] = a->in[i];
a->iainidx = (a->iainidx + 1) % a->iasize;
}
a->nsamps += a->bsize;
while (a->nsamps >= a->fsize)
{
for (i = 0, j = a->iaoutidx; i < a->fsize; i++, j = (j + 1) % a->iasize)
a->forfftin[i] = a->pregain * a->window[i] * a->inaccum[j];
a->iaoutidx = (a->iaoutidx + a->incr) % a->iasize;
a->nsamps -= a->incr;
fftwf_execute (a->Rfor);
calc_mask(a);
for (i = 0; i < a->msize; i++)
fftwf_execute (Rrev);
for (i = 0; i < fsize; i++)
save[saveidx][i] = postgain * window[i] * revfftout[i];
for (i = ovrlp; i > 0; i--)
{
a->revfftin[2 * i + 0] = a->mask[i] * a->forfftout[2 * i + 0];
a->revfftin[2 * i + 1] = a->mask[i] * a->forfftout[2 * i + 1];
}
fftwf_execute (a->Rrev);
for (i = 0; i < a->fsize; i++)
a->save[a->saveidx][i] = a->postgain * a->window[i] * a->revfftout[i];
for (i = a->ovrlp; i > 0; i--)
{
sbuff = (a->saveidx + i) % a->ovrlp;
sbegin = a->incr * (a->ovrlp - i);
for (j = sbegin, k = a->oainidx; j < a->incr + sbegin; j++, k = (k + 1) % a->oasize)
sbuff = (saveidx + i) % ovrlp;
sbegin = incr * (ovrlp - i);
for (j = sbegin, k = oainidx; j < incr + sbegin; j++, k = (k + 1) % oasize)
{
if ( i == a->ovrlp)
a->outaccum[k] = a->save[sbuff][j];
if ( i == ovrlp)
outaccum[k] = save[sbuff][j];
else
a->outaccum[k] += a->save[sbuff][j];
outaccum[k] += save[sbuff][j];
}
}
a->saveidx = (a->saveidx + 1) % a->ovrlp;
a->oainidx = (a->oainidx + a->incr) % a->oasize;
saveidx = (saveidx + 1) % ovrlp;
oainidx = (oainidx + incr) % oasize;
}
for (i = 0; i < a->bsize; i++)
for (i = 0; i < bsize; i++)
{
a->out[2 * i + 0] = a->outaccum[a->oaoutidx];
a->out[2 * i + 1] = 0.0;
a->oaoutidx = (a->oaoutidx + 1) % a->oasize;
out[2 * i + 0] = (float) (outaccum[oaoutidx]);
out[2 * i + 1] = 0.0;
oaoutidx = (oaoutidx + 1) % oasize;
}
}
else if (a->out != a->in)
std::copy(a->in, a->in + a->bsize * 2, a->out);
else if (out != in)
std::copy(in, in + bsize * 2, out);
}
void CFCOMP::setBuffers_cfcomp (CFCOMP *a, float* in, float* out)
void CFCOMP::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void CFCOMP::setSamplerate_cfcomp (CFCOMP *a, int rate)
void CFCOMP::setSamplerate(int _rate)
{
decalc_cfcomp (a);
a->rate = rate;
calc_cfcomp (a);
decalc_cfcomp();
rate = _rate;
calc_cfcomp();
}
void CFCOMP::setSize_cfcomp (CFCOMP *a, int size)
void CFCOMP::setSize(int size)
{
decalc_cfcomp (a);
a->bsize = size;
calc_cfcomp (a);
decalc_cfcomp();
bsize = size;
calc_cfcomp();
}
/********************************************************************************************************
@ -415,94 +418,75 @@ void CFCOMP::setSize_cfcomp (CFCOMP *a, int size)
* *
********************************************************************************************************/
void CFCOMP::SetCFCOMPRun (TXA& txa, int run)
void CFCOMP::setRun(int _run)
{
CFCOMP *a = txa.cfcomp;
if (a->run != run) {
a->run = run;
if (run != _run) {
run = _run;
}
}
void CFCOMP::SetCFCOMPPosition (TXA& txa, int pos)
void CFCOMP::setPosition(int pos)
{
CFCOMP *a = txa.cfcomp;
if (a->position != pos) {
a->position = pos;
if (position != pos) {
position = pos;
}
}
void CFCOMP::SetCFCOMPprofile (TXA& txa, int nfreqs, float* F, float* G, float *E)
void CFCOMP::setProfile(int _nfreqs, const double* _F, const double* _G, const double* _E)
{
CFCOMP *a = txa.cfcomp;
a->nfreqs = nfreqs < 1 ? 1 : nfreqs;
delete[] (a->E);
delete[] (a->F);
delete[] (a->G);
a->F = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->G = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->E = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
memcpy (a->F, F, a->nfreqs * sizeof (float));
memcpy (a->G, G, a->nfreqs * sizeof (float));
memcpy (a->E, E, a->nfreqs * sizeof (float));
delete[] (a->ep);
delete[] (a->gp);
delete[] (a->fp);
a->fp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->gp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->ep = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
calc_comp(a);
nfreqs = _nfreqs < 1 ? 1 : _nfreqs;
F.resize(nfreqs);
G.resize(nfreqs);
E.resize(nfreqs);
std::copy(_F, _F + nfreqs, F.begin());
std::copy(_G, _G + nfreqs, G.begin());
std::copy(_E, _E + nfreqs, E.begin());
fp.resize(nfreqs + 2);
gp.resize(nfreqs + 2);
ep.resize(nfreqs + 2);
calc_comp();
}
void CFCOMP::SetCFCOMPPrecomp (TXA& txa, float precomp)
void CFCOMP::setPrecomp(double _precomp)
{
CFCOMP *a = txa.cfcomp;
if (a->precomp != precomp)
if (precomp != _precomp)
{
a->precomp = precomp;
a->precomplin = pow (10.0, 0.05 * a->precomp);
precomp = _precomp;
precomplin = pow (10.0, 0.05 * precomp);
for (int i = 0; i < a->msize; i++)
for (int i = 0; i < msize; i++)
{
a->cfc_gain[i] = a->precomplin * a->comp[i];
cfc_gain[i] = precomplin * comp[i];
}
}
}
void CFCOMP::SetCFCOMPPeqRun (TXA& txa, int run)
void CFCOMP::setPeqRun(int _run)
{
CFCOMP *a = txa.cfcomp;
if (a->peq_run != run) {
a->peq_run = run;
if (peq_run != _run) {
peq_run = _run;
}
}
void CFCOMP::SetCFCOMPPrePeq (TXA& txa, float prepeq)
void CFCOMP::setPrePeq(double _prepeq)
{
CFCOMP *a = txa.cfcomp;
a->prepeq = prepeq;
a->prepeqlin = pow (10.0, 0.05 * a->prepeq);
prepeq = _prepeq;
prepeqlin = pow (10.0, 0.05 * prepeq);
}
void CFCOMP::GetCFCOMPDisplayCompression (TXA& txa, float* comp_values, int* ready)
void CFCOMP::getDisplayCompression(double* comp_values, int* ready)
{
int i;
CFCOMP *a = txa.cfcomp;
if ((*ready = a->mask_ready))
if ((*ready = mask_ready))
{
memcpy(a->delta_copy, a->delta, a->msize * sizeof(float));
memcpy(a->cfc_gain_copy, a->cfc_gain, a->msize * sizeof(float));
a->mask_ready = 0;
std::copy(delta.begin(), delta.end(), delta_copy.begin());
std::copy(cfc_gain.begin(), cfc_gain.end(), cfc_gain_copy.begin());
mask_ready = 0;
}
if (*ready)
{
for (i = 0; i < a->msize; i++)
comp_values[i] = 20.0 * MemLog::mlog10 (a->cfc_gain_copy[i] / (a->cfc_gain_copy[i] - a->delta_copy[i]));
for (int i = 0; i < msize; i++)
comp_values[i] = 20.0 * MemLog::mlog10 (cfc_gain_copy[i] / (cfc_gain_copy[i] - delta_copy[i]));
}
}

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_cfcomp_h
#define wdsp_cfcomp_h
#include <vector>
#include "fftw3.h"
#include "export.h"
@ -46,25 +48,25 @@ public:
int fsize;
int ovrlp;
int incr;
float* window;
std::vector<double> window;
int iasize;
float* inaccum;
float* forfftin;
float* forfftout;
std::vector<double> inaccum;
std::vector<float> forfftin;
std::vector<float> forfftout;
int msize;
float* cmask;
float* mask;
std::vector<double> cmask;
std::vector<double> mask;
int mask_ready;
float* cfc_gain;
float* revfftin;
float* revfftout;
float** save;
std::vector<double> cfc_gain;
std::vector<float> revfftin;
std::vector<float> revfftout;
std::vector<std::vector<double>> save;
int oasize;
float* outaccum;
float rate;
std::vector<double> outaccum;
double rate;
int wintype;
float pregain;
float postgain;
double pregain;
double postgain;
int nsamps;
int iainidx;
int iaoutidx;
@ -77,32 +79,32 @@ public:
int comp_method;
int nfreqs;
float* F;
float* G;
float* E;
float* fp;
float* gp;
float* ep;
float* comp;
float precomp;
float precomplin;
float* peq;
std::vector<double> F;
std::vector<double> G;
std::vector<double> E;
std::vector<double> fp;
std::vector<double> gp;
std::vector<double> ep;
std::vector<double> comp;
double precomp;
double precomplin;
std::vector<double> peq;
int peq_run;
float prepeq;
float prepeqlin;
float winfudge;
double prepeq;
double prepeqlin;
double winfudge;
float gain;
float mtau;
float mmult;
double gain;
double mtau;
double mmult;
// display stuff
float dtau;
float dmult;
float* delta;
float* delta_copy;
float* cfc_gain_copy;
double dtau;
double dmult;
std::vector<double> delta;
std::vector<double> delta_copy;
std::vector<double> cfc_gain_copy;
static CFCOMP* create_cfcomp (
CFCOMP(
int run,
int position,
int peq_run,
@ -115,36 +117,39 @@ public:
int wintype,
int comp_method,
int nfreqs,
float precomp,
float prepeq,
float* F,
float* G,
float* E,
float mtau,
float dtau
double precomp,
double prepeq,
const double* F,
const double* G,
const double* E,
double mtau,
double dtau
);
static void destroy_cfcomp (CFCOMP *a);
static void flush_cfcomp (CFCOMP *a);
static void xcfcomp (CFCOMP *a, int pos);
static void setBuffers_cfcomp (CFCOMP *a, float* in, float* out);
static void setSamplerate_cfcomp (CFCOMP *a, int rate);
static void setSize_cfcomp (CFCOMP *a, int size);
CFCOMP(const CFCOMP&) = delete;
CFCOMP& operator=(CFCOMP& other) = delete;
~CFCOMP();
void flush();
void execute(int pos);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetCFCOMPRun (TXA& txa, int run);
static void SetCFCOMPPosition (TXA& txa, int pos);
static void SetCFCOMPprofile (TXA& txa, int nfreqs, float* F, float* G, float *E);
static void SetCFCOMPPrecomp (TXA& txa, float precomp);
static void SetCFCOMPPeqRun (TXA& txa, int run);
static void SetCFCOMPPrePeq (TXA& txa, float prepeq);
static void GetCFCOMPDisplayCompression (TXA& txa, float* comp_values, int* ready);
void setRun(int run);
void setPosition(int pos);
void setProfile(int nfreqs, const double* F, const double* G, const double *E);
void setPrecomp(double precomp);
void setPeqRun(int run);
void setPrePeq(double prepeq);
void getDisplayCompression(double* comp_values, int* ready);
private:
static void calc_cfcwindow (CFCOMP *a);
void calc_cfcwindow();
static int fCOMPcompare (const void *a, const void *b);
static void calc_comp (CFCOMP *a);
static void calc_cfcomp(CFCOMP *a);
static void decalc_cfcomp(CFCOMP *a);
static void calc_mask (CFCOMP *a);
void calc_comp();
void calc_cfcomp();
void decalc_cfcomp();
void calc_mask();
};
} // namespace WDSP

View File

@ -35,13 +35,14 @@ in the January 2010 issue of RadCom magazine.
namespace WDSP {
COMPRESSOR* COMPRESSOR::create_compressor (
int run,
int buffsize,
float* inbuff,
float* outbuff,
float gain )
int run,
int buffsize,
float* inbuff,
float* outbuff,
double gain
)
{
COMPRESSOR *a = new COMPRESSOR;
auto *a = new COMPRESSOR;
a->run = run;
a->inbuff = inbuff;
a->outbuff = outbuff;
@ -61,10 +62,9 @@ void COMPRESSOR::flush_compressor (COMPRESSOR *)
void COMPRESSOR::xcompressor (COMPRESSOR *a)
{
int i;
float mag;
if (a->run)
for (i = 0; i < a->buffsize; i++)
for (int i = 0; i < a->buffsize; i++)
{
mag = sqrt(a->inbuff[2 * i + 0] * a->inbuff[2 * i + 0] + a->inbuff[2 * i + 1] * a->inbuff[2 * i + 1]);
if (a->gain * mag > 1.0)

View File

@ -41,14 +41,14 @@ public:
int buffsize;
float *inbuff;
float *outbuff;
float gain;
double gain;
static COMPRESSOR* create_compressor (
int run,
int buffsize,
float* inbuff,
float* outbuff,
float gain
double gain
);
static void destroy_compressor (COMPRESSOR *a);
static void flush_compressor (COMPRESSOR *a);

View File

@ -38,7 +38,14 @@ namespace WDSP {
void DBQBP::calc()
{
double f0, w0, bw, q, sn, cs, c, den;
double f0;
double w0;
double bw;
double q;
double sn;
double cs;
double c;
double den;
bw = f_high - f_low;
f0 = (f_high + f_low) / 2.0;
@ -98,13 +105,12 @@ void DBQBP::execute()
{
if (run)
{
int i, n;
for (i = 0; i < size; i++)
for (int i = 0; i < size; i++)
{
x0[0] = gain * in[i];
for (n = 0; n < nstages; n++)
for (int n = 0; n < nstages; n++)
{
if (n > 0)
x0[n] = y0[n - 1];
@ -120,7 +126,7 @@ void DBQBP::execute()
x1[n] = x0[n];
}
out[i] = y0[nstages - 1];
out[i] = (float) y0[nstages - 1];
}
}
else if (out != in)

View File

@ -52,8 +52,17 @@ public:
double f_high;
double gain;
int nstages;
double a0, a1, a2, b1, b2;
std::vector<double> x0, x1, x2, y0, y1, y2;
double a0;
double a1;
double a2;
double b1;
double b2;
std::vector<double> x0;
std::vector<double> x1;
std::vector<double> x2;
std::vector<double> y0;
std::vector<double> y1;
std::vector<double> y2;
// Double Bi-Quad Band-Pass
DBQBP(

View File

@ -57,15 +57,15 @@ DSPHP::DSPHP(
double _rate,
double _fc,
int _nstages
)
) :
run(_run),
size(_size),
in(_in),
out(_out),
rate(_rate),
fc(_fc),
nstages(_nstages)
{
run = _run;
size = _size;
in = _in;
out = _out;
rate = _rate;
fc = _fc;
nstages = _nstages;
calc();
}

View File

@ -118,7 +118,9 @@ EMNR::NP::NP(
rate(_rate),
msize(_msize),
lambda_y(_lambda_y),
lambda_d(_lambda_d)
lambda_d(_lambda_d),
invQeqMax(0.5),
av(2.12)
{
double tau0 = -128.0 / 8000.0 / log(0.7);
@ -132,8 +134,6 @@ EMNR::NP::NP(
snrq = -incr / (0.064 * rate);
double tau4 = -128.0 / 8000.0 / log(0.8);
betamax = exp(-incr / rate / tau4);
invQeqMax = 0.5;
av = 2.12;
Dtime = 8.0 * 12.0 * 128.0 / 8000.0;
U = 8;
V = (int)(0.5 + (Dtime * rate / (U * incr)));

View File

@ -33,239 +33,117 @@ warren@wpratt.com
namespace WDSP {
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
EMPHP* EMPHP::create_emphp (int run, int position, int size, int nc, int mp, float* in, float* out, int rate, int ctype, float f_low, float f_high)
{
EMPHP *a = new EMPHP;
float* impulse;
a->run = run;
a->position = position;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->rate = rate;
a->ctype = ctype;
a->f_low = f_low;
a->f_high = f_high;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
a->p = FIRCORE::create_fircore (a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
return a;
}
void EMPHP::destroy_emphp (EMPHP *a)
{
FIRCORE::destroy_fircore (a->p);
delete (a);
}
void EMPHP::flush_emphp (EMPHP *a)
{
FIRCORE::flush_fircore (a->p);
}
void EMPHP::xemphp (EMPHP *a, int position)
{
if (a->run && a->position == position)
FIRCORE::xfircore (a->p);
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
}
void EMPHP::setBuffers_emphp (EMPHP *a, float* in, float* out)
{
a->in = in;
a->out = out;
FIRCORE::setBuffers_fircore (a->p, a->in, a->out);
}
void EMPHP::setSamplerate_emphp (EMPHP *a, int rate)
{
float* impulse;
a->rate = rate;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EMPHP::setSize_emphp (EMPHP *a, int size)
{
float* impulse;
a->size = size;
FIRCORE::setSize_fircore (a->p, a->size);
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis: TXA Properties *
* *
********************************************************************************************************/
void EMPHP::SetFMEmphPosition (TXA& txa, int position)
{
txa.preemph->position = position;
}
void EMPHP::SetFMEmphMP (TXA& txa, int mp)
{
EMPHP *a;
a = txa.preemph;
if (a->mp != mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
}
void EMPHP::SetFMEmphNC (TXA& txa, int nc)
{
EMPHP *a;
float* impulse;
a = txa.preemph;
if (a->nc != nc)
{
a->nc = nc;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
}
void EMPHP::SetFMPreEmphFreqs (TXA& txa, float low, float high)
{
EMPHP *a;
float* impulse;
a = txa.preemph;
if (a->f_low != low || a->f_high != high)
{
a->f_low = low;
a->f_high = high;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
}
/********************************************************************************************************
* *
* Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
void EMPH::calc_emph (EMPH *a)
void EMPH::calc()
{
a->infilt = new float[2 * a->size * 2]; // (float *)malloc0(2 * a->size * sizeof(complex));
a->product = new float[2 * a->size * 2]; // (float *)malloc0(2 * a->size * sizeof(complex));
a->mults = FCurve::fc_mults(a->size, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
a->CFor = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->infilt, (fftwf_complex *)a->product, FFTW_FORWARD, FFTW_PATIENT);
a->CRev = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->product, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
infilt = new float[2 * size * 2];
product = new float[2 * size * 2];
mults = FCurve::fc_mults(
size,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
CFor = fftwf_plan_dft_1d(2 * size, (fftwf_complex *)infilt, (fftwf_complex *)product, FFTW_FORWARD, FFTW_PATIENT);
CRev = fftwf_plan_dft_1d(2 * size, (fftwf_complex *)product, (fftwf_complex *)out, FFTW_BACKWARD, FFTW_PATIENT);
}
void EMPH::decalc_emph (EMPH *a)
void EMPH::decalc()
{
fftwf_destroy_plan(a->CRev);
fftwf_destroy_plan(a->CFor);
delete[] (a->mults);
delete[] (a->product);
delete[] (a->infilt);
fftwf_destroy_plan(CRev);
fftwf_destroy_plan(CFor);
delete[] mults;
delete[] product;
delete[] infilt;
}
EMPH* EMPH::create_emph (int run, int position, int size, float* in, float* out, int rate, int ctype, float f_low, float f_high)
EMPH::EMPH(
int _run,
int _position,
int _size,
float* _in,
float* _out,
int _rate,
int _ctype,
double _f_low,
double _f_high
) :
run(_run),
position(_position),
size(_size),
in(_in),
out(_out),
ctype(_ctype),
f_low(_f_low),
f_high(_f_high),
rate((double) _rate)
{
EMPH *a = new EMPH;
a->run = run;
a->position = position;
a->size = size;
a->in = in;
a->out = out;
a->rate = (float)rate;
a->ctype = ctype;
a->f_low = f_low;
a->f_high = f_high;
calc_emph (a);
return a;
calc();
}
void EMPH::destroy_emph (EMPH *a)
EMPH::~EMPH()
{
decalc_emph (a);
delete (a);
decalc();
}
void EMPH::flush_emph (EMPH *a)
void EMPH::flush()
{
std::fill(a->infilt, a->infilt + 2 * a->size * 2, 0);
std::fill(infilt, infilt + 2 * size * 2, 0);
}
void EMPH::xemph (EMPH *a, int position)
void EMPH::execute(int _position)
{
int i;
float I, Q;
if (a->run && a->position == position)
double I;
double Q;
if (run && position == _position)
{
std::copy(a->in, a->in + a->size * 2, &(a->infilt[2 * a->size]));
fftwf_execute (a->CFor);
for (i = 0; i < 2 * a->size; i++)
std::copy(in, in + size * 2, &(infilt[2 * size]));
fftwf_execute (CFor);
for (int i = 0; i < 2 * size; i++)
{
I = a->product[2 * i + 0];
Q = a->product[2 * i + 1];
a->product[2 * i + 0] = I * a->mults[2 * i + 0] - Q * a->mults[2 * i + 1];
a->product[2 * i + 1] = I * a->mults[2 * i + 1] + Q * a->mults[2 * i + 0];
I = product[2 * i + 0];
Q = product[2 * i + 1];
product[2 * i + 0] = (float) (I * mults[2 * i + 0] - Q * mults[2 * i + 1]);
product[2 * i + 1] = (float) (I * mults[2 * i + 1] + Q * mults[2 * i + 0]);
}
fftwf_execute (a->CRev);
std::copy(&(a->infilt[2 * a->size]), &(a->infilt[2 * a->size]) + a->size * 2, a->infilt);
fftwf_execute (CRev);
std::copy(&(infilt[2 * size]), &(infilt[2 * size]) + size * 2, infilt);
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void EMPH::setBuffers_emph (EMPH *a, float* in, float* out)
void EMPH::setBuffers(float* _in, float* _out)
{
decalc_emph (a);
a->in = in;
a->out = out;
calc_emph (a);
decalc();
in = _in;
out = _out;
calc();
}
void EMPH::setSamplerate_emph (EMPH *a, int rate)
void EMPH::setSamplerate(int _rate)
{
decalc_emph (a);
a->rate = rate;
calc_emph (a);
decalc();
rate = _rate;
calc();
}
void EMPH::setSize_emph (EMPH *a, int size)
void EMPH::setSize(int _size)
{
decalc_emph(a);
a->size = size;
calc_emph(a);
decalc();
size = _size;
calc();
}
/********************************************************************************************************
* *
* Overlap-Save FM Pre-Emphasis: TXA Properties *
* *
********************************************************************************************************/
/* // Uncomment when needed
PORT
void SetTXAFMEmphPosition (int channel, int position)
{
ch.csDSP.lock();
txa.preemph->position = position;
ch.csDSP.unlock();
}
*/
} // namespace WDSP

View File

@ -25,57 +25,6 @@ warren@wpratt.com
*/
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
#ifndef wdsp_emphp_h
#define wdsp_emphp_h
#include "export.h"
namespace WDSP {
class FIRCORE;
class TXA;
class WDSP_API EMPHP
{
public:
int run;
int position;
int size;
int nc;
int mp;
float* in;
float* out;
int ctype;
float f_low;
float f_high;
float rate;
FIRCORE *p;
static EMPHP* create_emphp (int run, int position, int size, int nc, int mp,
float* in, float* out, int rate, int ctype, float f_low, float f_high);
static void destroy_emphp (EMPHP *a);
static void flush_emphp (EMPHP *a);
static void xemphp (EMPHP *a, int position);
static void setBuffers_emphp (EMPHP *a, float* in, float* out);
static void setSamplerate_emphp (EMPHP *a, int rate);
static void setSize_emphp (EMPHP *a, int size);
// TXA Properties
static void SetFMEmphPosition (TXA& txa, int position);
static void SetFMEmphMP (TXA& txa, int mp);
static void SetFMEmphNC (TXA& txa, int nc);
static void SetFMPreEmphFreqs(TXA& txa, float low, float high);
};
} // namespace WDSP
#endif
/********************************************************************************************************
* *
* Overlap-Save FM Pre-Emphasis *
@ -92,32 +41,46 @@ namespace WDSP {
class WDSP_API EMPH
{
public:
int run;
int position;
int size;
float* in;
float* out;
int ctype;
float f_low;
float f_high;
double f_low;
double f_high;
float* infilt;
float* product;
float* mults;
float rate;
double rate;
fftwf_plan CFor;
fftwf_plan CRev;
static EMPH* create_emph (int run, int position, int size, float* in, float* out, int rate, int ctype, float f_low, float f_high);
static void destroy_emph (EMPH *a);
static void flush_emph (EMPH *a);
static void xemph (EMPH *a, int position);
static void setBuffers_emph (EMPH *a, float* in, float* out);
static void setSamplerate_emph (EMPH *a, int rate);
static void setSize_emph (EMPH *a, int size);
EMPH(
int run,
int position,
int size,
float* in,
float* out,
int rate,
int ctype,
double f_low,
double f_high
);
EMPH(const EMPH&) = delete;
EMPH& operator=(const EMPH& other) = delete;
~EMPH();
void flush();
void execute(int position);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
private:
static void calc_emph (EMPH *a);
static void decalc_emph (EMPH *a);
void calc();
void decalc();
};
} // namespace WDSP

217
wdsp/emphp.cpp Normal file
View File

@ -0,0 +1,217 @@
/* emph.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014, 2016, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "emphp.hpp"
#include "fcurve.hpp"
#include "fircore.hpp"
#include "TXA.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
EMPHP::EMPHP(
int _run,
int _position,
int _size,
int _nc,
int _mp,
float* _in,
float* _out,
int _rate,
int _ctype,
double _f_low,
double _f_high
)
{
float* impulse;
run = _run;
position = _position;
size = _size;
nc = _nc;
mp = _mp;
in = _in;
out = _out;
rate = _rate;
ctype = _ctype;
f_low = _f_low;
f_high = _f_high;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0, 0
);
p = FIRCORE::create_fircore(size, in, out, nc, mp, impulse);
delete[] (impulse);
}
EMPHP::~EMPHP()
{
delete (p);
}
void EMPHP::flush()
{
FIRCORE::flush_fircore(p);
}
void EMPHP::execute(int _position)
{
if (run && position == _position)
FIRCORE::xfircore(p);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void EMPHP::setBuffers(float* _in, float* _out)
{
in = _in;
out = _out;
FIRCORE::setBuffers_fircore(p, in, out);
}
void EMPHP::setSamplerate(int _rate)
{
float* impulse;
rate = _rate;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0, 0
);
FIRCORE::setImpulse_fircore(p, impulse, 1);
delete[] (impulse);
}
void EMPHP::setSize(int _size)
{
float* impulse;
size = _size;
FIRCORE::setSize_fircore(p, size);
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
FIRCORE::setImpulse_fircore(p, impulse, 1);
delete[] (impulse);
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis: TXA Properties *
* *
********************************************************************************************************/
void EMPHP::setPosition(int _position)
{
position = _position;
}
void EMPHP::setMP(int _mp)
{
if (mp != _mp)
{
mp = _mp;
FIRCORE::setMp_fircore(p, mp);
}
}
void EMPHP::setNC(int _nc)
{
float* impulse;
if (nc != _nc)
{
nc = _nc;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
FIRCORE::setNc_fircore(p, nc, impulse);
delete[] (impulse);
}
}
void EMPHP::setFreqs(double low, double high)
{
float* impulse;
if (f_low != low || f_high != high)
{
f_low = low;
f_high = high;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
FIRCORE::setImpulse_fircore(p, impulse, 1);
delete[] (impulse);
}
}
} // namespace WDSP

91
wdsp/emphp.hpp Normal file
View File

@ -0,0 +1,91 @@
/* emph.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014, 2016, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
#ifndef wdsp_emphp_h
#define wdsp_emphp_h
#include "export.h"
namespace WDSP {
class FIRCORE;
class TXA;
class WDSP_API EMPHP
{
public:
int run;
int position;
int size;
int nc;
int mp;
float* in;
float* out;
int ctype;
double f_low;
double f_high;
double rate;
FIRCORE *p;
EMPHP(
int run,
int position,
int size,
int nc,
int mp,
float* in,
float* out,
int rate,
int ctype,
double f_low,
double f_high
);
EMPHP(const EMPHP&) = delete;
EMPHP& operator=(const EMPHP& other) = delete;
~EMPHP();
void flush();
void execute(int position);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
void setPosition(int position);
void setMP(int mp);
void setNC(int nc);
void setFreqs(double low, double high);
};
} // namespace WDSP
#endif