1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-10 18:43:28 -05:00
sdrangel/wdsp/RXA.cpp
2024-08-05 20:05:59 +02:00

1319 lines
46 KiB
C++

/* RXA.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2014, 2015, 2016, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "RXA.hpp"
#include "amd.hpp"
#include "meter.hpp"
#include "shift.hpp"
#include "resample.hpp"
#include "bandpass.hpp"
#include "bps.hpp"
#include "nbp.hpp"
#include "snba.hpp"
#include "bpsnba.hpp"
#include "sender.hpp"
#include "amsq.hpp"
#include "fmd.hpp"
#include "fmsq.hpp"
#include "eqp.hpp"
#include "anf.hpp"
#include "anr.hpp"
#include "emnr.hpp"
#include "patchpanel.hpp"
#include "siphon.hpp"
#include "cblock.hpp"
#include "ssql.hpp"
#include "fircore.hpp"
#include "wcpAGC.hpp"
#include "anb.hpp"
#include "nob.hpp"
#include "speak.hpp"
#include "mpeak.hpp"
#include "fir.hpp"
namespace WDSP {
RXA::RXA(
int _in_rate, // input samplerate
int _out_rate, // output samplerate
int _dsp_rate, // sample rate for mainstream dsp processing
int _dsp_size // number complex samples processed per buffer in mainstream dsp processing
) : Unit(
_in_rate,
_out_rate,
_dsp_rate,
_dsp_size
)
{
mode = RXA::RXA_LSB;
std::fill(meter.begin(), meter.end(), 0);
// Noise blanker (ANB or "NB")
anb = new ANB(
0, // run
dsp_insize, // input buffer size
inbuff, // pointer to input buffer
inbuff, // pointer to output buffer
in_rate, // samplerate
0.0001, // tau
0.0001, // hang time
0.0001, // advance time
0.05, // back tau
30 // thershold
);
// Noise blanker (NOB or "NB2")
nob = new NOB(
0, // run
dsp_insize, // input buffer size
inbuff, // pointer to input buffer
inbuff, // pointer to output buffer
in_rate, // samplerate
0, // mode (zero)
0.0001, // advance slew time
0.0001, // advance time
0.0001, // hang slew time
0.0001, // hang time
0.025, // max_imp_seq_time:
0.05, // back tau
30
);
// Ftequency shifter - shift to select a slice of spectrum
shift = new SHIFT(
0, // run
dsp_insize, // input buffer size
inbuff, // pointer to input buffer
inbuff, // pointer to output buffer
in_rate, // samplerate
0.0); // amount to shift (Hz)
// Input resampler - resample to dsp rate for main processing
rsmpin = new RESAMPLE(
0, // run - will be turned ON below if needed
dsp_insize, // input buffer size
inbuff, // pointer to input buffer
midbuff, // pointer to output buffer
in_rate, // input samplerate
dsp_rate, // output samplerate
0.0, // select cutoff automatically
0, // select ncoef automatically
1.0); // gain
// Input meter - ADC
adcmeter = new METER(
0, // run
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter.data(), // result vector
RXA_ADC_AV, // index for average value
RXA_ADC_PK, // index for peak value
-1, // index for gain value - disabled
nullptr); // pointer for gain computation
// Notched bandpass section
// notch database
ndb = new NOTCHDB (
0, // master run for all nbp's
1024); // max number of notches
// notched bandpass
nbp0 = new NBP (
1, // run, always runs
0, // run the notches
0, // position
dsp_size, // buffer size
std::max(2048, dsp_size), // number of coefficients
0, // minimum phase flag
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
-4150.0, // lower filter frequency
-150.0, // upper filter frequency
dsp_rate, // sample rate
0, // wintype
1.0, // gain
1, // auto-increase notch width
1025, // max number of passbands
ndb); // addr of database pointer
// bandpass for snba
bpsnba = new BPSNBA (
0, // bpsnba run flag
0, // run the notches
0, // position
dsp_size, // size
std::max(2048, dsp_size), // number of filter coefficients
0, // minimum phase flag
midbuff, // input buffer
midbuff, // output buffer
dsp_rate, // samplerate
+ 250.0, // abs value of cutoff nearest zero
+ 5700.0, // abs value of cutoff farthest zero
- 5700.0, // current low frequency
- 250.0, // current high frequency
0, // wintype
1.0, // gain
1, // auto-increase notch width
1025, // max number of passbands
ndb); // addr of database pointer
// Post filter display send - send spectrum display (after S-meter in the block diagram)
sender = new SENDER (
0, // run
0, // flag
0, // mode
dsp_size, // size
midbuff // pointer to input buffer
);
// End notched bandpass section
// S-meter
smeter = new METER(
1, // run
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter.data(), // result vector
RXA_S_AV, // index for average value
RXA_S_PK, // index for peak value
-1, // index for gain value - disabled
nullptr); // pointer for gain computation
// AM squelch capture (for other modes than FM)
amsq = new AMSQ(
0, // run
dsp_size, // buffer size
midbuff, // pointer to signal input buffer used by xamsq
midbuff, // pointer to signal output buffer used by xamsq
midbuff, // pointer to trigger buffer that xamsqcap will capture
dsp_rate, // sample rate
0.010, // time constant for averaging signal level
0.070, // signal up transition time
0.070, // signal down transition time
0.009, // signal level to initiate tail
0.010, // signal level to initiate unmute
0.000, // minimum tail length
1.500, // maximum tail length
0.0); // muted gain
// AM/SAM demodulator
amd = new AMD(
0, // run - OFF by default
dsp_size, // buffer size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
0, // mode: 0->AM, 1->SAM
1, // levelfade: 0->OFF, 1->ON
0, // sideband mode: 0->OFF
dsp_rate, // sample rate
-2000.0, // minimum lock frequency
+2000.0, // maximum lock frequency
1.0, // zeta
250.0, // omegaN
0.02, // tauR
1.4); // tauI
// FM demodulator
fmd = new FMD(
0, // run
dsp_size, // buffer size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
dsp_rate, // sample rate
5000.0, // deviation
300.0, // f_low
3000.0, // f_high
-8000.0, // fmin
+8000.0, // fmax
1.0, // zeta
20000.0, // omegaN
0.02, // tau - for dc removal
0.5, // audio gain
1, // run tone filter
254.1, // ctcss frequency
std::max(2048, dsp_size), // # coefs for de-emphasis filter
0, // min phase flag for de-emphasis filter
std::max(2048, dsp_size), // # coefs for audio cutoff filter
0); // min phase flag for audio cutoff filter
// FM squelch apply
fmsq = new FMSQ(
0, // run
dsp_size, // buffer size
midbuff, // pointer to input signal buffer
midbuff, // pointer to output signal buffer
fmd->audio.data(), // pointer to trigger buffer
dsp_rate, // sample rate
5000.0, // cutoff freq for noise filter (Hz)
&fmd->pllpole, // pointer to pole frequency of the fmd pll (Hz)
0.100, // delay time after channel flush
0.001, // tau for noise averaging
0.100, // tau for long noise averaging
0.050, // signal up transition time
0.010, // signal down transition time
0.750, // noise level to initiate tail
0.562, // noise level to initiate unmute
0.000, // minimum tail time
0.100, // maximum tail time
std::max(2048, dsp_size), // number of coefficients for noise filter
0); // minimum phase flag
// Spectral noise blanker (SNB)
snba = new SNBA(
0, // run
midbuff, // input buffer
midbuff, // output buffer
dsp_rate, // input / output sample rate
12000, // internal processing sample rate
dsp_size, // buffer size
4, // overlap factor to use
256, // frame size to use; sized for 12K rate
64, // asize
2, // npasses
8.0, // k1
20.0, // k2
10, // b
2, // pre
2, // post
0.5, // pmultmin
200.0, // output resampler low cutoff
5400.0); // output resampler high cutoff
// Equalizer
{
std::array<float, 11> default_F = {0.0, 32.0, 63.0, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16000.0};
std::array<float, 11> default_G = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
eqp = new EQP(
0, // run - OFF by default
dsp_size, // buffer size
std::max(2048, dsp_size), // number of filter coefficients
0, // minimum phase flag
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
10, // number of frequencies
default_F.data(), // frequency vector
default_G.data(), // gain vector
0, // cutoff mode
0, // wintype
dsp_rate); // sample rate
}
// Auto notch filter
anf = new ANF(
0, // run - OFF by default
0, // position
dsp_size, // buffer size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
ANF::ANF_DLINE_SIZE, // dline_size
64, // taps
16, // delay
0.0001, // two_mu
0.1, // gamma
1.0, // lidx
0.0, // lidx_min
200.0, // lidx_max
6.25e-12, // ngamma
6.25e-10, // den_mult
1.0, // lincr
3.0); // ldecr
// LMS noise reduction (ANR or "NR")
anr = new ANR(
0, // run - OFF by default
0, // position
dsp_size, // buffer size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
ANR::ANR_DLINE_SIZE, // dline_size
64, // taps
16, // delay
0.0001, // two_mu
0.1, // gamma
120.0, // lidx
120.0, // lidx_min
200.0, // lidx_max
0.001, // ngamma
6.25e-10, // den_mult
1.0, // lincr
3.0); // ldecr
// Spectral noise reduyction (EMNR or "NR2")
emnr = new EMNR(
0, // run
0, // position
dsp_size, // buffer size
midbuff, // input buffer
midbuff, // output buffer
4096, // FFT size
4, // overlap
dsp_rate, // samplerate
0, // window type
1.0, // gain
2, // gain method
0, // npe_method
1); // ae_run
// AGC
agc = new WCPAGC(
1, // run
3, // mode
1, // peakmode = envelope
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
dsp_size, // buffer size
dsp_rate, // sample rate
0.001, // tau_attack
0.250, // tau_decay
4, // n_tau
10000.0, // max_gain
1.5, // var_gain
1000.0, // fixed_gain
1.0, // max_input
1.0, // out_target
0.250, // tau_fast_backaverage
0.005, // tau_fast_decay
5.0, // pop_ratio
1, // hang_enable
0.500, // tau_hang_backmult
0.250, // hangtime
0.250, // hang_thresh
0.100); // tau_hang_decay
// AGC meter
agcmeter = new METER(
0, // run
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter.data(), // result vector
RXA_AGC_AV, // index for average value
RXA_AGC_PK, // index for peak value
RXA_AGC_GAIN, // index for gain value
&agc->gain); // pointer for gain computation
// Bandpass filter - After spectral noise reduction in the block diagram
bp1 = new BANDPASS (
1, // run - used only with ( AM || ANF || ANR || EMNR)
0, // position
dsp_size, // buffer size
std::max(2048, dsp_size), // number of coefficients
0, // flag for minimum phase
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
-4150.0, // lower filter frequency
-150.0, // upper filter frequency
dsp_rate, // sample rate
1, // wintype
1.0); // gain
// Scope/phase display send - pull phase & scope display data
sip1 = new SIPHON(
0, // run - needed only for phase display
0, // position
0, // mode
0, // disp
dsp_size, // size of input buffer
midbuff, // input buffer
4096, // number of samples to store
4096, // fft size for spectrum
0); // specmode
// AM carrier block
cbl = new CBL(
0, // run - needed only if set to ON
dsp_size, // buffer size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
0, // mode
dsp_rate, // sample rate
0.02); // tau
// CW peaking filter
speak = new SPEAK(
0, // run
dsp_size, // buffer size,
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
dsp_rate, // sample rate
600.0, // center frequency
100.0, // bandwidth
2.0, // gain
4, // number of stages
1); // design
// Dolly filter (multiple peak filter) - default is 2 for RTTY
{
std::array<int, 2> def_enable = { 1, 1};
std::array<double, 2> def_freq = {2125.0, 2295.0};
std::array<double, 2> def_bw = { 75.0, 75.0};
std::array<double, 2> def_gain = { 1.0, 1.0};
mpeak = new MPEAK(
0, // run
dsp_size, // size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
dsp_rate, // sample rate
2, // number of peaking filters
def_enable.data(), // enable vector
def_freq.data(), // frequency vector
def_bw.data(), // bandwidth vector
def_gain.data(), // gain vector
4 ); // number of stages
}
// Syllabic squelch (Voice suelch) - Not in the block diagram
ssql = new SSQL(
0, // run
dsp_size, // size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
dsp_rate, // sample rate
0.070, // signal up transition time
0.070, // signal down transition time
0.0, // muted gain
0.1, // mute time-constant
0.1, // unmute time-constant
0.08, // window threshold
0.8197, // trigger threshold
2400, // ring size for f_to_v converter
2000.0); // max freq for f_to_v converter
// PatchPanel
panel = new PANEL(
1, // run
dsp_size, // size
midbuff, // pointer to input buffer
midbuff, // pointer to output buffer
4.0, // gain1
1.0, // gain2I
1.0, // gain2Q
3, // 3 for I and Q
0); // no copy
// AM squelch apply - absent but in the block diagram
// Output resampler
rsmpout = new RESAMPLE(
0, // run - will be turned ON below if needed
dsp_size, // input buffer size
midbuff, // pointer to input buffer
outbuff, // pointer to output buffer
dsp_rate, // input sample rate
out_rate, // output sample rate
0.0, // select cutoff automatically
0, // select ncoef automatically
1.0); // gain
// turn OFF / ON resamplers as needed
resCheck();
}
RXA::~RXA()
{
delete rsmpout;
delete panel;
delete ssql;
delete mpeak;
delete speak;
delete cbl;
delete sip1;
delete bp1;
delete agcmeter;
delete agc;
delete emnr;
delete anr;
delete anf;
delete eqp;
delete snba;
delete fmsq;
delete fmd;
delete amd;
delete amsq;
delete smeter;
delete sender;
delete bpsnba;
delete nbp0;
delete ndb;
delete adcmeter;
delete rsmpin;
delete shift;
delete nob;
delete anb;
}
void RXA::flush()
{
Unit::flushBuffers();
anb->flush();
nob->flush();
shift->flush();
rsmpin->flush();
adcmeter->flush();
nbp0->flush();
bpsnba->flush();
sender->flush();
smeter->flush();
amsq->flush();
amd->flush();
fmd->flush();
fmsq->flush();
snba->flush();
eqp->flush();
anf->flush();
anr->flush();
emnr->flush();
agc->flush();
agcmeter->flush();
bp1->flush();
sip1->flush();
cbl->flush();
speak->flush();
mpeak->flush();
ssql->flush();
panel->flush();
rsmpout->flush();
}
void RXA::execute()
{
anb->execute();
nob->execute();
shift->execute();
rsmpin->execute();
adcmeter->execute();
bpsnba->exec_in(0);
nbp0->execute(0);
smeter->execute();
sender->execute();
amsq->xcap();
bpsnba->exec_out(0);
amd->execute();
fmd->execute();
fmsq->execute();
bpsnba->exec_in(1);
bpsnba->exec_out(1);
snba->execute();
eqp->execute();
anf->execute(0);
anr->ANR::execute(0);
emnr->execute(0);
bp1->BANDPASS::execute(0);
agc->execute();
anf->execute(1);
anr->execute(1);
emnr->execute(1);
bp1->execute(1);
agcmeter->execute();
sip1->execute(0);
cbl->execute();
speak->execute();
mpeak->execute();
ssql->execute();
panel->execute();
amsq->execute();
rsmpout->execute();
}
void RXA::setInputSamplerate(int _in_rate)
{
Unit::setBuffersInputSamplerate(_in_rate);
// anb
anb->setBuffers(inbuff, inbuff);
anb->setSize(dsp_insize);
anb->setSamplerate(in_rate);
// nob
nob->setBuffers(inbuff, inbuff);
nob->setSize(dsp_insize);
nob->setSamplerate(in_rate);
// shift
shift->setBuffers(inbuff, inbuff);
shift->setSize(dsp_insize);
shift->setSamplerate(in_rate);
// input resampler
rsmpin->setBuffers(inbuff, midbuff);
rsmpin->setSize(dsp_insize);
rsmpin->setInRate(in_rate);
resCheck();
}
void RXA::setOutputSamplerate(int _out_rate)
{
Unit::setBuffersOutputSamplerate(_out_rate);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setOutRate(out_rate);
resCheck();
}
void RXA::setDSPSamplerate(int _dsp_rate)
{
Unit::setBuffersDSPSamplerate(_dsp_rate);
// anb
anb->setBuffers(inbuff, inbuff);
anb->setSize(dsp_insize);
// nob
nob->setBuffers(inbuff, inbuff);
nob->setSize(dsp_insize);
// shift
shift->setBuffers(inbuff, inbuff);
shift->setSize(dsp_insize);
// input resampler
rsmpin->setBuffers(inbuff, midbuff);
rsmpin->setSize(dsp_insize);
rsmpin->setOutRate(dsp_rate);
// dsp_rate blocks
adcmeter->setSamplerate(dsp_rate);
nbp0->setSamplerate(dsp_rate);
bpsnba->setSamplerate(dsp_rate);
smeter->setSamplerate(dsp_rate);
sender->setSamplerate(dsp_rate);
amsq->setSamplerate(dsp_rate);
amd->setSamplerate(dsp_rate);
fmd->setSamplerate(dsp_rate);
fmsq->setBuffers(midbuff, midbuff, fmd->audio.data());
fmsq->setSamplerate(dsp_rate);
// snba->setSamplerate(dsp_rate); SMBA removed
eqp->setSamplerate(dsp_rate);
anf->setSamplerate(dsp_rate);
anr->setSamplerate(dsp_rate);
emnr->setSamplerate(dsp_rate);
bp1->setSamplerate(dsp_rate);
agc->setSamplerate(dsp_rate);
agcmeter->setSamplerate(dsp_rate);
sip1->setSamplerate(dsp_rate);
cbl->setSamplerate(dsp_rate);
speak->setSamplerate(dsp_rate);
mpeak->setSamplerate(dsp_rate);
ssql->setSamplerate(dsp_rate);
panel->setSamplerate(dsp_rate);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setInRate(dsp_rate);
resCheck();
}
void RXA::setDSPBuffsize(int _dsp_size)
{
Unit::setBuffersDSPBuffsize(_dsp_size);
// anb
anb->setBuffers(inbuff, inbuff);
anb->setSize(dsp_insize);
// nob
nob->setBuffers(inbuff, inbuff);
nob->setSize(dsp_insize);
// shift
shift->setBuffers(inbuff, inbuff);
shift->setSize(dsp_insize);
// input resampler
rsmpin->setBuffers(inbuff, midbuff);
rsmpin->setSize(dsp_insize);
// dsp_size blocks
adcmeter->setBuffers(midbuff);
adcmeter->setSize(dsp_size);
nbp0->setBuffers(midbuff, midbuff);
nbp0->setSize(dsp_size);
bpsnba->setBuffers(midbuff, midbuff);
bpsnba->setSize(dsp_size);
smeter->setBuffers(midbuff);
smeter->setSize(dsp_size);
sender->setBuffers(midbuff);
sender->setSize(dsp_size);
amsq->setBuffers(midbuff, midbuff, midbuff);
amsq->setSize(dsp_size);
amd->setBuffers(midbuff, midbuff);
amd->setSize(dsp_size);
fmd->setBuffers(midbuff, midbuff);
fmd->setSize(dsp_size);
fmsq->setBuffers(midbuff, midbuff, fmd->audio.data());
fmsq->setSize(dsp_size);
snba->setBuffers(midbuff, midbuff);
snba->setSize(dsp_size);
eqp->setBuffers(midbuff, midbuff);
eqp->setSize(dsp_size);
anf->setBuffers(midbuff, midbuff);
anf->setSize(dsp_size);
anr->setBuffers(midbuff, midbuff);
anr->setSize(dsp_size);
emnr->setBuffers(midbuff, midbuff);
emnr->setSize(dsp_size);
bp1->setBuffers(midbuff, midbuff);
bp1->setSize(dsp_size);
agc->setBuffers(midbuff, midbuff);
agc->setSize(dsp_size);
agcmeter->setBuffers(midbuff);
agcmeter->setSize(dsp_size);
sip1->setBuffers(midbuff);
sip1->setSize(dsp_size);
cbl->setBuffers(midbuff, midbuff);
cbl->setSize(dsp_size);
speak->setBuffers(midbuff, midbuff);
speak->setSize(dsp_size);
mpeak->setBuffers(midbuff, midbuff);
mpeak->setSize(dsp_size);
ssql->setBuffers(midbuff, midbuff);
ssql->setSize(dsp_size);
panel->setBuffers(midbuff, midbuff);
panel->setSize(dsp_size);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setSize(dsp_size);
}
void RXA::setSpectrumProbe(BufferProbe *spectrumProbe)
{
sender->SetSpectrum(1, spectrumProbe);
sender->run = 1;
}
/********************************************************************************************************
* *
* RXA Mode & Filter Controls *
* *
********************************************************************************************************/
void RXA::setMode(int _mode)
{
if (mode != _mode)
{
int amd_run = (_mode == RXA_AM) || (_mode == RXA_SAM);
bpsnbaCheck (_mode, ndb->master_run);
bp1Check (
amd_run,
snba->run,
emnr->run,
anf->run,
anr->run
);
mode = _mode;
amd->run = 0;
fmd->run = 0;
switch (_mode)
{
case RXA_AM:
amd->run = 1;
amd->mode = 0;
break;
case RXA_SAM:
amd->run = 1;
amd->mode = 1;
break;
case RXA_DSB:
break;
case RXA_FM:
fmd->run = 1;
break;
default:
break;
}
bp1Set();
bpsnbaSet(); // update variables
}
}
void RXA::resCheck()
{
// turn OFF/ON resamplers depending upon whether they're needed
RESAMPLE *a = rsmpin;
if (in_rate != dsp_rate)
a->run = 1;
else
a->run = 0;
a = rsmpout;
if (dsp_rate != out_rate)
a->run = 1;
else
a->run = 0;
}
void RXA::bp1Check (
int amd_run,
int snba_run,
int emnr_run,
int anf_run,
int anr_run
)
{
BANDPASS *a = bp1;
float gain;
if (amd_run ||
snba_run ||
emnr_run ||
anf_run ||
anr_run
)
gain = 2.0;
else
gain = 1.0;
if (a->gain != gain)
a->setGain(gain, 0);
}
void RXA::bp1Set ()
{
BANDPASS *a = bp1;
int old = a->run;
if ((amd->run == 1) ||
(snba->run == 1) ||
(emnr->run == 1) ||
(anf->run == 1) ||
(anr->run == 1)
)
a->run = 1;
else
a->run = 0;
if (!old && a->run)
a->flush();
FIRCORE::setUpdate_fircore(a->fircore);
}
void RXA::bpsnbaCheck(int _mode, int _notch_run)
{
// for BPSNBA: set run, position, freqs, run_notches
// call this upon change in RXA_mode, snba_run, notch_master_run
BPSNBA *a = bpsnba;
double f_low = 0.0;
double f_high = 0.0;
int run_notches = 0;
switch (_mode)
{
case RXA_LSB:
case RXA_CWL:
case RXA_DIGL:
f_low = -a->abs_high_freq;
f_high = -a->abs_low_freq;
run_notches = _notch_run;
break;
case RXA_USB:
case RXA_CWU:
case RXA_DIGU:
f_low = +a->abs_low_freq;
f_high = +a->abs_high_freq;
run_notches = _notch_run;
break;
case RXA_AM:
case RXA_SAM:
case RXA_DSB:
case RXA_FM:
f_low = +a->abs_low_freq;
f_high = +a->abs_high_freq;
run_notches = 0;
break;
case RXA_DRM:
case RXA_SPEC:
break;
default:
break;
}
// 'run' and 'position' are examined at run time; no filter changes required.
// Recalculate filter if frequencies OR 'run_notches' changed.
if ((a->f_low != f_low ) ||
(a->f_high != f_high ) ||
(a->run_notches != run_notches))
{
a->f_low = f_low;
a->f_high = f_high;
a->run_notches = run_notches;
// f_low, f_high, run_notches are needed for the filter recalculation
bpsnba->recalc_bpsnba_filter(0);
}
}
void RXA::bpsnbaSet()
{
// for BPSNBA: set run, position, freqs, run_notches
// call this upon change in RXA_mode, snba_run, notch_master_run
BPSNBA *a = bpsnba;
switch (mode)
{
case RXA_LSB:
case RXA_CWL:
case RXA_DIGL:
case RXA_USB:
case RXA_CWU:
case RXA_DIGU:
a->run = snba->run;
a->position = 0;
break;
case RXA_DSB:
case RXA_AM:
case RXA_FM:
a->run = snba->run;
a->position = 1;
break;
case RXA_SAM:
case RXA_DRM:
case RXA_SPEC:
a->run = 0;
break;
default:
break;
}
FIRCORE::setUpdate_fircore(a->bpsnba->fircore);
}
void RXA::updateNBPFiltersLightWeight()
{ // called when setting tune freq or shift freq
nbp0->calc_lightweight();
bpsnba->bpsnba->calc_lightweight();
}
void RXA::updateNBPFilters()
{
NBP *a = nbp0;
BPSNBA *b = bpsnba;
if (a->fnfrun)
{
a->calc_impulse();
FIRCORE::setImpulse_fircore(a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if (b->bpsnba->fnfrun)
{
b->recalc_bpsnba_filter(1);
}
}
int RXA::nbpAddNotch(int _notch, double _fcenter, double _fwidth, int _active)
{
NOTCHDB *b = ndb;
int rval = b->addNotch(_notch, _fcenter, _fwidth, _active);
if (rval == 0) {
updateNBPFilters();
}
return rval;
}
int RXA::nbpGetNotch(int _notch, double* _fcenter, double* _fwidth, int* _active) const
{
NOTCHDB *a = ndb;
int rval = a->getNotch(_notch, _fcenter, _fwidth, _active);
return rval;
}
int RXA::nbpDeleteNotch(int _notch)
{
NOTCHDB *a = ndb;
int rval = a->deleteNotch(_notch);
if (rval == 0) {
updateNBPFilters();
}
return rval;
}
int RXA::nbpEditNotch(int _notch, double _fcenter, double _fwidth, int _active)
{
NOTCHDB *a = ndb;
int rval = a->editNotch(_notch, _fcenter, _fwidth, _active);
if (rval == 0) {
updateNBPFilters();
}
return rval;
}
void RXA::nbpGetNumNotches(int* _nnotches) const
{
const NOTCHDB *a = ndb;
a->getNumNotches(_nnotches);
}
void RXA::nbpSetTuneFrequency(double _tunefreq)
{
NOTCHDB *a;
a = ndb;
if (_tunefreq != a->tunefreq)
{
a->tunefreq = _tunefreq;
updateNBPFiltersLightWeight();
}
}
void RXA::nbpSetShiftFrequency(double _shift)
{
NOTCHDB *a;
a = ndb;
if (_shift != a->shift)
{
a->shift = _shift;
updateNBPFiltersLightWeight();
}
}
void RXA::nbpSetNotchesRun(int _run)
{
NOTCHDB *a = ndb;
NBP *b = nbp0;
if ( _run != a->master_run)
{
a->master_run = _run; // update variables
b->fnfrun = a->master_run;
bpsnbaCheck(mode, _run);
b->calc_impulse(); // recalc nbp impulse response
FIRCORE::setImpulse_fircore(b->fircore, b->impulse, 0); // calculate new filter masks
delete[] (b->impulse);
bpsnbaSet();
FIRCORE::setUpdate_fircore(b->fircore); // apply new filter masks
}
}
void RXA::nbpSetWindow(int _wintype)
{
NBP *a;
BPSNBA *b;
a = nbp0;
b = bpsnba;
if (a->wintype != _wintype)
{
a->wintype = _wintype;
a->calc_impulse();
FIRCORE::setImpulse_fircore(a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if (b->wintype != _wintype)
{
b->wintype = _wintype;
b->recalc_bpsnba_filter(1);
}
}
void RXA::nbpSetAutoIncrease(int _autoincr)
{
NBP *a;
BPSNBA *b;
a = nbp0;
b = bpsnba;
if (a->autoincr != _autoincr)
{
a->autoincr = _autoincr;
a->calc_impulse();
FIRCORE::setImpulse_fircore(a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if (b->autoincr != _autoincr)
{
b->autoincr = _autoincr;
b->recalc_bpsnba_filter(1);
}
}
void RXA::setAMDRun(int _run)
{
if (amd->run != _run)
{
bp1Check (
_run,
snba->run,
emnr->run,
anf->run,
anr->run
);
amd->run = _run;
bp1Set();
}
}
void RXA::setSNBARun(int _run)
{
SNBA *a = snba;
if (a->run != _run)
{
bpsnbaCheck(mode, ndb->master_run);
bp1Check(
amd->run,
_run,
emnr->run,
anf->run,
anr->run
);
a->run = _run;
bp1Set();
bpsnbaSet();
}
}
void RXA::setANFRun(int _run)
{
ANF *a = anf;
if (a->run != _run)
{
bp1Check (
amd->run,
snba->run,
emnr->run,
_run,
anr->run
);
a->run = _run;
bp1Set();
a->flush();
}
}
void RXA::setANFPosition(int _position)
{
anf->position = _position;
bp1->position = _position;
anf->flush();
}
void RXA::setANRRun(int _run)
{
ANR *a = anr;
if (a->run != _run)
{
bp1Check (
amd->run,
snba->run,
emnr->run,
anf->run,
_run
);
a->run = _run;
bp1Set();
a->flush();
}
}
void RXA::setANRPosition(int _position)
{
anr->position = _position;
bp1->position = _position;
anr->flush();
}
void RXA::setEMNRRun(int _run)
{
EMNR *a = emnr;
if (a->run != _run)
{
bp1Check (
amd->run,
snba->run,
_run,
anf->run,
anr->run
);
a->run = _run;
bp1Set();
}
}
void RXA::setEMNRPosition(int _position)
{
emnr->position = _position;
bp1->position = _position;
}
void RXA::getAGCThresh(double *_thresh, double _size, double _rate) const
//for line on bandscope.
{
double noise_offset;
noise_offset = 10.0 * log10((nbp0->fhigh - nbp0->flow) * _size / _rate);
*_thresh = 20.0 * log10( agc->min_volts ) - noise_offset;
}
void RXA::setAGCThresh(double _thresh, double _size, double _rate)
//for line on bandscope
{
double noise_offset;
noise_offset = 10.0 * log10((nbp0->fhigh - nbp0->flow) * _size / _rate);
agc->max_gain = agc->out_target / (agc->var_gain * pow (10.0, (_thresh + noise_offset) / 20.0));
agc->loadWcpAGC();
}
/********************************************************************************************************
* *
* Collectives *
* *
********************************************************************************************************/
void RXA::setPassband(float _f_low, float _f_high)
{
bp1->setBandpassFreqs (_f_low, _f_high); // After spectral noise reduction ( AM || ANF || ANR || EMNR)
snba->setOutputBandwidth (_f_low, _f_high); // Spectral noise blanker (SNB)
nbp0->SetFreqs (_f_low, _f_high); // Notched bandpass
}
void RXA::setNC(int _nc)
{
int oldstate = state;
nbp0->SetNC (_nc);
bpsnba->SetNC (_nc);
bp1->SetBandpassNC (_nc);
eqp->setNC (_nc);
fmsq->setNC (_nc);
fmd->setNCde (_nc);
fmd->setNCaud (_nc);
state = oldstate;
}
void RXA::setMP(int _mp)
{
nbp0->SetMP (_mp);
bpsnba->SetMP (_mp);
bp1->SetBandpassMP (_mp);
eqp->setMP (_mp);
fmsq->setMP (_mp);
fmd->setMPde (_mp);
fmd->setMPaud (_mp);
}
} // namespace WDSP