1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-05 16:31:15 -05:00
sdrangel/kitiirfir/IIRFilterCode.cpp

527 lines
23 KiB
C++

/*
By Daniel Klostermann
Iowa Hills Software, LLC IowaHills.com
If you find a problem, please leave a note at:
http://www.iowahills.com/feedbackcomments.html
May 1, 2016
ShowMessage is a C++ Builder function, and it usage has been commented out.
If you are using C++ Builder, include vcl.h for ShowMessage.
Otherwise replace ShowMessage with something appropriate for your compiler.
See the FilterKitMain.cpp file for an example on how to use this code.
*/
#include "IIRFilterCode.h"
#include "PFiftyOneRevE.h"
#include "LowPassPrototypes.h"
#include <complex>
#include <math.h>
namespace kitiirfir
{
//---------------------------------------------------------------------------
/*
This calculates the coefficients for IIR filters from a set of 2nd order s plane coefficients
which are obtained by calling CalcLowPassProtoCoeff() in LowPassPrototypes.cpp.
The s plane filters are frequency scaled so their 3 dB frequency is at s = omega = 1 rad/sec.
The poles and zeros are also ordered in a manner appropriate for IIR filters.
For a derivation of the formulas used here, see the IIREquationDerivations.pdf
This shows how the various poly coefficients are defined.
H(s) = ( Ds^2 + Es + F ) / ( As^2 + Bs + C )
H(z) = ( b2z^2 + b1z + b0 ) / ( a2z^2 + a1z + a0 )
*/
TIIRCoeff CalcIIRFilterCoeff(TIIRFilterParams IIRFilt) {
int j, k;
double Scalar, SectionGain, Coeff[5];
double A, B, C, D, E, F, T, Q, Arg;
double a2[ARRAY_DIM], a1[ARRAY_DIM], a0[ARRAY_DIM];
double b2[ARRAY_DIM], b1[ARRAY_DIM], b0[ARRAY_DIM];
std::complex<double> Roots[5];
TIIRCoeff IIR; // Gets returned by this function.
TLowPassParams LowPassFilt; // Passed to the CalcLowPassProtoCoeff() function.
TSPlaneCoeff SPlaneCoeff; // Filled by the CalcLowPassProtoCoeff() function.
// We can set the TLowPassParams variables directly from the TIIRFilterParams variables.
LowPassFilt.ProtoType = IIRFilt.ProtoType;
LowPassFilt.NumPoles = IIRFilt.NumPoles;
LowPassFilt.Ripple = IIRFilt.Ripple;
LowPassFilt.Gamma = IIRFilt.Gamma;
LowPassFilt.StopBanddB = IIRFilt.StopBanddB;
// Get the low pass prototype 2nd order s plane coefficients.
SPlaneCoeff = CalcLowPassProtoCoeff(LowPassFilt);
// Init the IIR structure.
for (j = 0; j < ARRAY_DIM; j++) {
IIR.a0[j] = 0.0;
IIR.b0[j] = 0.0;
IIR.a1[j] = 0.0;
IIR.b1[j] = 0.0;
IIR.a2[j] = 0.0;
IIR.b2[j] = 0.0;
IIR.a3[j] = 0.0;
IIR.b3[j] = 0.0;
IIR.a4[j] = 0.0;
IIR.b4[j] = 0.0;
}
// Set the number of IIR filter sections we will be generating.
IIR.NumSections = (IIRFilt.NumPoles + 1) / 2;
if (IIRFilt.IIRPassType == iirBPF || IIRFilt.IIRPassType == iirNOTCH)
IIR.NumSections = IIRFilt.NumPoles;
// For All Pass filters, the numerator is set to the denominator values as shown here.
// If the prototype was an Inv Cheby or Elliptic, the S plane numerator is discarded.
// Use the Gauss as the prototype for the best all pass results (most linear phase).
// The all pass H(s) = ( As^2 - Bs + C ) / ( As^2 + Bs + C )
if (IIRFilt.IIRPassType == iirALLPASS) {
for (j = 0; j < SPlaneCoeff.NumSections; j++) {
SPlaneCoeff.N2[j] = SPlaneCoeff.D2[j];
SPlaneCoeff.N1[j] = -SPlaneCoeff.D1[j];
SPlaneCoeff.N0[j] = SPlaneCoeff.D0[j];
}
}
// T sets the IIR filter's corner frequency, or center freqency.
// The Bilinear transform is defined as: s = 2/T * tan(Omega/2) = 2/T * (1 - z)/(1 + z)
T = 2.0 * tan(IIRFilt.OmegaC * M_PI_2);
Q = 1.0 + IIRFilt.OmegaC; // Q is used for band pass and notch filters.
if (Q > 1.95)
Q = 1.95;
Q = 0.8 * tan(Q * M_PI_4); // This is a correction factor for Q.
Q = IIRFilt.OmegaC / IIRFilt.BW / Q; // This is the corrected Q.
// Calc the IIR coefficients.
// SPlaneCoeff.NumSections is the number of 1st and 2nd order s plane factors.
k = 0;
for (j = 0; j < SPlaneCoeff.NumSections; j++) {
A = SPlaneCoeff.D2[j]; // We use A - F to make the code easier to read.
B = SPlaneCoeff.D1[j];
C = SPlaneCoeff.D0[j];
D = SPlaneCoeff.N2[j];
E = SPlaneCoeff.N1[j]; // N1 is always zero, except for the all pass. Consequently, the equations below can be simplified a bit by removing E.
F = SPlaneCoeff.N0[j];
// b's are the numerator a's are the denominator
if (IIRFilt.IIRPassType == iirLPF || IIRFilt.IIRPassType == iirALLPASS) // Low Pass and All Pass
{
if (A == 0.0 && D == 0.0) // 1 pole case
{
Arg = (2.0 * B + C * T);
IIR.a2[j] = 0.0;
IIR.a1[j] = (-2.0 * B + C * T) / Arg;
IIR.a0[j] = 1.0;
IIR.b2[j] = 0.0;
IIR.b1[j] = (-2.0 * E + F * T) / Arg * C / F;
IIR.b0[j] = (2.0 * E + F * T) / Arg * C / F;
} else // 2 poles
{
Arg = (4.0 * A + 2.0 * B * T + C * T * T);
IIR.a2[j] = (4.0 * A - 2.0 * B * T + C * T * T) / Arg;
IIR.a1[j] = (2.0 * C * T * T - 8.0 * A) / Arg;
IIR.a0[j] = 1.0;
// With all pole filters, our LPF numerator is (z+1)^2, so all our Z Plane zeros are at -1
IIR.b2[j] = (4.0 * D - 2.0 * E * T + F * T * T) / Arg * C / F;
IIR.b1[j] = (2.0 * F * T * T - 8.0 * D) / Arg * C / F;
IIR.b0[j] = (4 * D + F * T * T + 2.0 * E * T) / Arg * C / F;
}
}
if (IIRFilt.IIRPassType == iirHPF) // High Pass
{
if (A == 0.0 && D == 0.0) // 1 pole
{
Arg = 2.0 * C + B * T;
IIR.a2[j] = 0.0;
IIR.a1[j] = (B * T - 2.0 * C) / Arg;
IIR.a0[j] = 1.0;
IIR.b2[j] = 0.0;
IIR.b1[j] = (E * T - 2.0 * F) / Arg * C / F;
IIR.b0[j] = (E * T + 2.0 * F) / Arg * C / F;
} else // 2 poles
{
Arg = A * T * T + 4.0 * C + 2.0 * B * T;
IIR.a2[j] = (A * T * T + 4.0 * C - 2.0 * B * T) / Arg;
IIR.a1[j] = (2.0 * A * T * T - 8.0 * C) / Arg;
IIR.a0[j] = 1.0;
// With all pole filters, our HPF numerator is (z-1)^2, so all our Z Plane zeros are at 1
IIR.b2[j] = (D * T * T - 2.0 * E * T + 4.0 * F) / Arg * C / F;
IIR.b1[j] = (2.0 * D * T * T - 8.0 * F) / Arg * C / F;
IIR.b0[j] = (D * T * T + 4.0 * F + 2.0 * E * T) / Arg * C / F;
}
}
if (IIRFilt.IIRPassType == iirBPF) // Band Pass
{
if (A == 0.0 && D == 0.0) // 1 pole
{
Arg = 4.0 * B * Q + 2.0 * C * T + B * Q * T * T;
a2[k] = (B * Q * T * T + 4.0 * B * Q - 2.0 * C * T) / Arg;
a1[k] = (2.0 * B * Q * T * T - 8.0 * B * Q) / Arg;
a0[k] = 1.0;
b2[k] = (E * Q * T * T + 4.0 * E * Q - 2.0 * F * T) / Arg * C
/ F;
b1[k] = (2.0 * E * Q * T * T - 8.0 * E * Q) / Arg * C / F;
b0[k] = (4.0 * E * Q + 2.0 * F * T + E * Q * T * T) / Arg * C
/ F;
k++;
} else //2 Poles
{
IIR.a4[j] = (16.0 * A * Q * Q + A * Q * Q * T * T * T * T
+ 8.0 * A * Q * Q * T * T - 2.0 * B * Q * T * T * T
- 8.0 * B * Q * T + 4.0 * C * T * T) * F;
IIR.a3[j] = (4.0 * T * T * T * T * A * Q * Q
- 4.0 * Q * T * T * T * B + 16.0 * Q * B * T
- 64.0 * A * Q * Q) * F;
IIR.a2[j] = (96.0 * A * Q * Q - 16.0 * A * Q * Q * T * T
+ 6.0 * A * Q * Q * T * T * T * T - 8.0 * C * T * T)
* F;
IIR.a1[j] = (4.0 * T * T * T * T * A * Q * Q
+ 4.0 * Q * T * T * T * B - 16.0 * Q * B * T
- 64.0 * A * Q * Q) * F;
IIR.a0[j] = (16.0 * A * Q * Q + A * Q * Q * T * T * T * T
+ 8.0 * A * Q * Q * T * T + 2.0 * B * Q * T * T * T
+ 8.0 * B * Q * T + 4.0 * C * T * T) * F;
// With all pole filters, our BPF numerator is (z-1)^2 * (z+1)^2 so the zeros come back as +/- 1 pairs
IIR.b4[j] = (8.0 * D * Q * Q * T * T - 8.0 * E * Q * T
+ 16.0 * D * Q * Q - 2.0 * E * Q * T * T * T
+ D * Q * Q * T * T * T * T + 4.0 * F * T * T) * C;
IIR.b3[j] = (16.0 * E * Q * T - 4.0 * E * Q * T * T * T
- 64.0 * D * Q * Q + 4.0 * D * Q * Q * T * T * T * T)
* C;
IIR.b2[j] = (96.0 * D * Q * Q - 8.0 * F * T * T
+ 6.0 * D * Q * Q * T * T * T * T
- 16.0 * D * Q * Q * T * T) * C;
IIR.b1[j] = (4.0 * D * Q * Q * T * T * T * T - 64.0 * D * Q * Q
+ 4.0 * E * Q * T * T * T - 16.0 * E * Q * T) * C;
IIR.b0[j] = (16.0 * D * Q * Q + 8.0 * E * Q * T
+ 8.0 * D * Q * Q * T * T + 2.0 * E * Q * T * T * T
+ 4.0 * F * T * T + D * Q * Q * T * T * T * T) * C;
// T = 2 makes these values approach 0.0 (~ 1.0E-12) The root solver needs 0.0 for numerical reasons.
if (fabs(T - 2.0) < 0.0005) {
IIR.a3[j] = 0.0;
IIR.a1[j] = 0.0;
IIR.b3[j] = 0.0;
IIR.b1[j] = 0.0;
}
// We now have a 4th order poly in the form a4*s^4 + a3*s^3 + a2*s^2 + a2*s + a0
// We find the roots of this so we can form two 2nd order polys.
Coeff[0] = IIR.a4[j];
Coeff[1] = IIR.a3[j];
Coeff[2] = IIR.a2[j];
Coeff[3] = IIR.a1[j];
Coeff[4] = IIR.a0[j];
FindRoots(4, Coeff, Roots);
// In effect, the root finder scales the poly by 1/a4 so we have to apply this factor back into
// the two 2nd order equations we are forming.
Scalar = sqrt(fabs(IIR.a4[j]));
// Form the two 2nd order polys from the roots.
a2[k] = Scalar;
a1[k] = -(Roots[0] + Roots[1]).real() * Scalar;
a0[k] = (Roots[0] * Roots[1]).real() * Scalar;
k++;
a2[k] = Scalar;
a1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
a0[k] = (Roots[2] * Roots[3]).real() * Scalar;
k--;
// Now do the same with the numerator.
Coeff[0] = IIR.b4[j];
Coeff[1] = IIR.b3[j];
Coeff[2] = IIR.b2[j];
Coeff[3] = IIR.b1[j];
Coeff[4] = IIR.b0[j];
if (IIRFilt.ProtoType == INVERSE_CHEBY
|| IIRFilt.ProtoType == ELLIPTIC) {
FindRoots(4, Coeff, Roots);
} else // With all pole filters (Butter, Cheb, etc), we know we have these 4 real roots. The root finder won't necessarily pair real roots the way we need, so rather than compute these, we simply set them.
{
Roots[0] = std::complex<double>(-1.0, 0.0);
Roots[1] = std::complex<double>(1.0, 0.0);
Roots[2] = std::complex<double>(-1.0, 0.0);
Roots[3] = std::complex<double>(1.0, 0.0);
}
Scalar = sqrt(fabs(IIR.b4[j]));
b2[k] = Scalar;
if (IIRFilt.ProtoType == INVERSE_CHEBY
|| IIRFilt.ProtoType == ELLIPTIC) {
b1[k] = -(Roots[0] + Roots[1]).real() * Scalar; // = 0.0
} else // else the prototype is an all pole filter
{
b1[k] = 0.0; // b1 = 0 for all pole filters, but the addition above won't always equal zero exactly.
}
b0[k] = (Roots[0] * Roots[1]).real() * Scalar;
k++;
b2[k] = Scalar;
if (IIRFilt.ProtoType == INVERSE_CHEBY
|| IIRFilt.ProtoType == ELLIPTIC) {
b1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
} else // All pole
{
b1[k] = 0.0;
}
b0[k] = (Roots[2] * Roots[3]).real() * Scalar;
k++;
// Go below to see where we store these 2nd order polys back into IIR
}
}
if (IIRFilt.IIRPassType == iirNOTCH) // Notch
{
if (A == 0.0 && D == 0.0) // 1 pole
{
Arg = 2.0 * B * T + C * Q * T * T + 4.0 * C * Q;
a2[k] = (4.0 * C * Q - 2.0 * B * T + C * Q * T * T) / Arg;
a1[k] = (2.0 * C * Q * T * T - 8.0 * C * Q) / Arg;
a0[k] = 1.0;
b2[k] = (4.0 * F * Q - 2.0 * E * T + F * Q * T * T) / Arg * C
/ F;
b1[k] = (2.0 * F * Q * T * T - 8.0 * F * Q) / Arg * C / F;
b0[k] = (2.0 * E * T + F * Q * T * T + 4.0 * F * Q) / Arg * C
/ F;
k++;
} else {
IIR.a4[j] = (4.0 * A * T * T - 2.0 * B * T * T * T * Q
+ 8.0 * C * Q * Q * T * T - 8.0 * B * T * Q
+ C * Q * Q * T * T * T * T + 16.0 * C * Q * Q) * -F;
IIR.a3[j] = (16.0 * B * T * Q + 4.0 * C * Q * Q * T * T * T * T
- 64.0 * C * Q * Q - 4.0 * B * T * T * T * Q) * -F;
IIR.a2[j] = (96.0 * C * Q * Q - 8.0 * A * T * T
- 16.0 * C * Q * Q * T * T
+ 6.0 * C * Q * Q * T * T * T * T) * -F;
IIR.a1[j] = (4.0 * B * T * T * T * Q - 16.0 * B * T * Q
- 64.0 * C * Q * Q + 4.0 * C * Q * Q * T * T * T * T)
* -F;
IIR.a0[j] = (4.0 * A * T * T + 2.0 * B * T * T * T * Q
+ 8.0 * C * Q * Q * T * T + 8.0 * B * T * Q
+ C * Q * Q * T * T * T * T + 16.0 * C * Q * Q) * -F;
// Our Notch Numerator isn't simple. [ (4+T^2)*z^2 - 2*(4-T^2)*z + (4+T^2) ]^2
IIR.b4[j] = (2.0 * E * T * T * T * Q - 4.0 * D * T * T
- 8.0 * F * Q * Q * T * T + 8.0 * E * T * Q
- 16.0 * F * Q * Q - F * Q * Q * T * T * T * T) * C;
IIR.b3[j] = (64.0 * F * Q * Q + 4.0 * E * T * T * T * Q
- 16.0 * E * T * Q - 4.0 * F * Q * Q * T * T * T * T)
* C;
IIR.b2[j] = (8.0 * D * T * T - 96.0 * F * Q * Q
+ 16.0 * F * Q * Q * T * T
- 6.0 * F * Q * Q * T * T * T * T) * C;
IIR.b1[j] = (16.0 * E * T * Q - 4.0 * E * T * T * T * Q
+ 64.0 * F * Q * Q - 4.0 * F * Q * Q * T * T * T * T)
* C;
IIR.b0[j] = (-4.0 * D * T * T - 2.0 * E * T * T * T * Q
- 8.0 * E * T * Q - 8.0 * F * Q * Q * T * T
- F * Q * Q * T * T * T * T - 16.0 * F * Q * Q) * C;
// T = 2 (OmegaC = 0.5) makes these values approach 0.0 (~ 1.0E-12). The root solver wants 0.0 for numerical reasons.
if (fabs(T - 2.0) < 0.0005) {
IIR.a3[j] = 0.0;
IIR.a1[j] = 0.0;
IIR.b3[j] = 0.0;
IIR.b1[j] = 0.0;
}
// We now have a 4th order poly in the form a4*s^4 + a3*s^3 + a2*s^2 + a2*s + a0
// We find the roots of this so we can form two 2nd order polys.
Coeff[0] = IIR.a4[j];
Coeff[1] = IIR.a3[j];
Coeff[2] = IIR.a2[j];
Coeff[3] = IIR.a1[j];
Coeff[4] = IIR.a0[j];
// In effect, the root finder scales the poly by 1/a4 so we have to apply this factor back into
// the two 2nd order equations we are forming.
FindRoots(4, Coeff, Roots);
Scalar = sqrt(fabs(IIR.a4[j]));
a2[k] = Scalar;
a1[k] = -(Roots[0] + Roots[1]).real() * Scalar;
a0[k] = (Roots[0] * Roots[1]).real() * Scalar;
k++;
a2[k] = Scalar;
a1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
a0[k] = (Roots[2] * Roots[3]).real() * Scalar;
k--;
// Now do the same with the numerator.
Coeff[0] = IIR.b4[j];
Coeff[1] = IIR.b3[j];
Coeff[2] = IIR.b2[j];
Coeff[3] = IIR.b1[j];
Coeff[4] = IIR.b0[j];
FindRoots(4, Coeff, Roots);
Scalar = sqrt(fabs(IIR.b4[j]));
b2[k] = Scalar;
b1[k] = -(Roots[0] + Roots[1]).real() * Scalar;
b0[k] = (Roots[0] * Roots[1]).real() * Scalar;
k++;
b2[k] = Scalar;
b1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
b0[k] = (Roots[2] * Roots[3]).real() * Scalar;
k++;
}
}
}
if (IIRFilt.IIRPassType == iirBPF || IIRFilt.IIRPassType == iirNOTCH) {
// In the calcs above for the BPF and Notch, we didn't set a0=1, so we do it here.
for (j = 0; j < IIR.NumSections; j++) {
b2[j] /= a0[j];
b1[j] /= a0[j];
b0[j] /= a0[j];
a2[j] /= a0[j];
a1[j] /= a0[j];
a0[j] = 1.0;
}
for (j = 0; j < IIR.NumSections; j++) {
IIR.a0[j] = a0[j];
IIR.a1[j] = a1[j];
IIR.a2[j] = a2[j];
IIR.b0[j] = b0[j];
IIR.b1[j] = b1[j];
IIR.b2[j] = b2[j];
}
}
// Adjust the b's or a0 for the desired Gain.
SectionGain = pow(10.0, IIRFilt.dBGain / 20.0);
SectionGain = pow(SectionGain, 1.0 / (double) IIR.NumSections);
for (j = 0; j < IIR.NumSections; j++) {
IIR.b0[j] *= SectionGain;
IIR.b1[j] *= SectionGain;
IIR.b2[j] *= SectionGain;
// This is an alternative to adjusting the b's
// IIR.a0[j] = SectionGain;
}
return (IIR);
}
//---------------------------------------------------------------------------
// This code implements an IIR filter as a Form 1 Biquad.
// It uses 2 sets of shift registers, RegX on the input side and RegY on the output side.
// There are many ways to implement an IIR filter, some very good, and some extremely bad.
// For numerical reasons, a Form 1 Biquad implementation is among the best.
void FilterWithIIR(TIIRCoeff IIRCoeff, double *Signal, double *FilteredSignal,
int NumSigPts) {
double y;
int j, k;
for (j = 0; j < NumSigPts; j++) {
k = 0;
y = SectCalc(j, k, Signal[j], IIRCoeff);
for (k = 1; k < IIRCoeff.NumSections; k++) {
y = SectCalc(j, k, y, IIRCoeff);
}
FilteredSignal[j] = y;
}
}
//---------------------------------------------------------------------------
// This gets used with the function above, FilterWithIIR()
// Note the use of MaxRegVal to avoid a math overflow condition.
double SectCalc(int j, int k, double x, TIIRCoeff IIRCoeff) {
double y, CenterTap;
static double RegX1[ARRAY_DIM], RegX2[ARRAY_DIM], RegY1[ARRAY_DIM],
RegY2[ARRAY_DIM], MaxRegVal;
static bool MessageShown = false;
// Zero the regiisters on the 1st call or on an overflow condition. The overflow limit used
// here is small for double variables, but a filter that reaches this threshold is broken.
if ((j == 0 && k == 0) || MaxRegVal > OVERFLOW_LIMIT) {
if (MaxRegVal > OVERFLOW_LIMIT && !MessageShown) {
// ShowMessage("ERROR: Math Over Flow in IIR Section Calc. \nThe register values exceeded 1.0E20 \n");
MessageShown = true; // So this message doesn't get shown thousands of times.
}
MaxRegVal = 1.0E-12;
for (int i = 0; i < ARRAY_DIM; i++) {
RegX1[i] = 0.0;
RegX2[i] = 0.0;
RegY1[i] = 0.0;
RegY2[i] = 0.0;
}
}
CenterTap = x * IIRCoeff.b0[k] + IIRCoeff.b1[k] * RegX1[k]
+ IIRCoeff.b2[k] * RegX2[k];
y = IIRCoeff.a0[k] * CenterTap - IIRCoeff.a1[k] * RegY1[k]
- IIRCoeff.a2[k] * RegY2[k];
RegX2[k] = RegX1[k];
RegX1[k] = x;
RegY2[k] = RegY1[k];
RegY1[k] = y;
// MaxRegVal is used to prevent overflow. Overflow seldom occurs, but will
// if the filter has faulty coefficients. MaxRegVal is usually less than 100.0
if (fabs(CenterTap) > MaxRegVal)
MaxRegVal = fabs(CenterTap);
if (fabs(y) > MaxRegVal)
MaxRegVal = fabs(y);
return (y);
}
//---------------------------------------------------------------------------
// This function calculates the frequency response of an IIR filter.
// Probably the easiest way to determine the frequency response of an IIR filter is to send
// an impulse through the filter and do an FFT on the output. This method does a DFT on
// the coefficients of each biquad section. The results from the cascaded sections are
// then multiplied together.
// This approach works better than an FFT when the filter is very narrow. To analyze highly selective
// filters with an FFT can require a very large number of points, which can be quite cumbersome.
// This approach allows you to set the range of frequencies to be analyzed by modifying the statement
// Arg = M_PI * (double)j / (double)NumPts; .
void IIRFreqResponse(TIIRCoeff IIR, int NumSections, double *RealHofZ,
double *ImagHofZ, int NumPts) {
int j, n;
double Arg;
std::complex<double> z1, z2, HofZ, Denom;
for (j = 0; j < NumPts; j++) {
Arg = M_PI * (double) j / (double) NumPts;
z1 = std::complex<double>(cos(Arg), -sin(Arg)); // z = e^(j*omega)
z2 = z1 * z1; // z squared
HofZ = std::complex<double>(1.0, 0.0);
for (n = 0; n < NumSections; n++) {
HofZ *= IIR.a0[n]; // This can be in the denominator, but only if a0=1. a0 can be other than 1.0 to adjust the filter's gain. See the bottom of the CalcIIRFilterCoeff() function.
HofZ *= IIR.b0[n] + IIR.b1[n] * z1 + IIR.b2[n] * z2; // Numerator
Denom = 1.0 + IIR.a1[n] * z1 + IIR.a2[n] * z2; // Denominator
if (std::abs(Denom) < 1.0E-12)
Denom = 1.0E-12; // A pole on the unit circle would cause this to be zero, so this should never happen. It could happen however if the filter also has a zero at this frequency. Then H(z) needs to be determined by L'Hopitals rule at this freq.
HofZ /= Denom;
}
RealHofZ[j] = HofZ.real();
ImagHofZ[j] = HofZ.imag();
}
}
//---------------------------------------------------------------------------
} // namespace