1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-20 16:41:01 -05:00
sdrangel/sdrbase/gui/glspectrum.cpp

1705 lines
44 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifdef USE_SIMD
#include <immintrin.h>
#endif
#include <QMouseEvent>
#include <QOpenGLShaderProgram>
#include <QOpenGLFunctions>
#include <QPainter>
#include "gui/glspectrum.h"
#include <QDebug>
GLSpectrum::GLSpectrum(QWidget* parent) :
QGLWidget(parent),
m_cursorState(CSNormal),
m_mouseInside(false),
m_changesPending(true),
m_centerFrequency(100000000),
m_referenceLevel(0),
m_powerRange(100),
m_decay(0),
m_sampleRate(500000),
m_fftSize(512),
m_displayGrid(true),
m_displayGridIntensity(5),
m_displayTraceIntensity(50),
m_invertedWaterfall(false),
m_displayMaxHold(false),
m_currentSpectrum(0),
m_displayCurrent(false),
m_waterfallBuffer(NULL),
m_waterfallTextureHeight(-1),
m_displayWaterfall(true),
m_ssbSpectrum(false),
m_histogramBuffer(NULL),
m_histogram(NULL),
m_histogramHoldoff(NULL),
m_displayHistogram(true),
m_displayChanged(false)
{
setAutoFillBackground(false);
setAttribute(Qt::WA_OpaquePaintEvent, true);
setAttribute(Qt::WA_NoSystemBackground, true);
setMouseTracking(true);
setMinimumSize(200, 200);
m_waterfallShare = 0.66;
for(int i = 0; i <= 239; i++) {
QColor c;
c.setHsv(239 - i, 255, 15 + i);
((quint8*)&m_waterfallPalette[i])[0] = c.red();
((quint8*)&m_waterfallPalette[i])[1] = c.green();
((quint8*)&m_waterfallPalette[i])[2] = c.blue();
((quint8*)&m_waterfallPalette[i])[3] = c.alpha();
}
m_waterfallPalette[239] = 0xffffffff;
m_histogramPalette[0] = m_waterfallPalette[0];
for(int i = 1; i < 240; i++) {
QColor c;
c.setHsv(239 - i, 255 - ((i < 200) ? 0 : (i - 200) * 3), 150 + ((i < 100) ? i : 100));
((quint8*)&m_histogramPalette[i])[0] = c.red();
((quint8*)&m_histogramPalette[i])[1] = c.green();
((quint8*)&m_histogramPalette[i])[2] = c.blue();
((quint8*)&m_histogramPalette[i])[3] = c.alpha();
}
for(int i = 1; i < 16; i++) {
QColor c;
c.setHsv(270, 128, 48 + i * 4);
((quint8*)&m_histogramPalette[i])[0] = c.red();
((quint8*)&m_histogramPalette[i])[1] = c.green();
((quint8*)&m_histogramPalette[i])[2] = c.blue();
((quint8*)&m_histogramPalette[i])[3] = c.alpha();
}
m_histogramHoldoffBase = 2; // was 4
m_histogramHoldoffCount = m_histogramHoldoffBase;
m_histogramLateHoldoff = 1; // was 20
m_histogramStroke = 40; // was 4
m_timeScale.setFont(font());
m_timeScale.setOrientation(Qt::Vertical);
m_timeScale.setRange(Unit::Time, 0, 1);
m_powerScale.setFont(font());
m_powerScale.setOrientation(Qt::Vertical);
m_frequencyScale.setFont(font());
m_frequencyScale.setOrientation(Qt::Horizontal);
connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
m_timer.start(50);
}
GLSpectrum::~GLSpectrum()
{
cleanup();
QMutexLocker mutexLocker(&m_mutex);
m_changesPending = true;
if(m_waterfallBuffer != NULL) {
delete m_waterfallBuffer;
m_waterfallBuffer = NULL;
}
if(m_histogramBuffer != NULL) {
delete m_histogramBuffer;
m_histogramBuffer = NULL;
}
if(m_histogram != NULL) {
delete[] m_histogram;
m_histogram = NULL;
}
if(m_histogramHoldoff != NULL) {
delete[] m_histogramHoldoff;
m_histogramHoldoff = NULL;
}
}
void GLSpectrum::setCenterFrequency(quint64 frequency)
{
m_centerFrequency = frequency;
m_changesPending = true;
update();
}
void GLSpectrum::setReferenceLevel(Real referenceLevel)
{
m_referenceLevel = referenceLevel;
m_changesPending = true;
update();
}
void GLSpectrum::setPowerRange(Real powerRange)
{
m_powerRange = powerRange;
m_changesPending = true;
update();
}
void GLSpectrum::setDecay(int decay)
{
m_decay = decay;
if(m_decay < 0)
m_decay = 0;
else if(m_decay > 10)
m_decay = 10;
}
void GLSpectrum::setHistoLateHoldoff(int lateHoldoff)
{
m_histogramLateHoldoff = lateHoldoff;
if(m_histogramLateHoldoff < 0)
m_histogramLateHoldoff = 0;
else if(m_histogramLateHoldoff > 20)
m_histogramLateHoldoff = 20;
}
void GLSpectrum::setHistoStroke(int stroke)
{
m_histogramStroke = stroke;
if(m_histogramStroke < 4)
m_histogramStroke = 4;
else if(m_histogramStroke > 240)
m_histogramStroke = 240;
}
void GLSpectrum::setSampleRate(qint32 sampleRate)
{
m_sampleRate = sampleRate;
m_changesPending = true;
update();
}
void GLSpectrum::setDisplayWaterfall(bool display)
{
m_displayWaterfall = display;
m_changesPending = true;
stopDrag();
update();
}
void GLSpectrum::setSsbSpectrum(bool ssbSpectrum)
{
m_ssbSpectrum = ssbSpectrum;
update();
}
void GLSpectrum::setInvertedWaterfall(bool inv)
{
m_invertedWaterfall = inv;
m_changesPending = true;
stopDrag();
update();
}
void GLSpectrum::setDisplayMaxHold(bool display)
{
m_displayMaxHold = display;
m_changesPending = true;
stopDrag();
update();
}
void GLSpectrum::setDisplayCurrent(bool display)
{
m_displayCurrent = display;
m_changesPending = true;
stopDrag();
update();
}
void GLSpectrum::setDisplayHistogram(bool display)
{
m_displayHistogram = display;
m_changesPending = true;
stopDrag();
update();
}
void GLSpectrum::setDisplayGrid(bool display)
{
m_displayGrid = display;
update();
}
void GLSpectrum::setDisplayGridIntensity(int intensity)
{
m_displayGridIntensity = intensity;
if (m_displayGridIntensity > 100) {
m_displayGridIntensity = 100;
} else if (m_displayGridIntensity < 0) {
m_displayGridIntensity = 0;
}
update();
}
void GLSpectrum::setDisplayTraceIntensity(int intensity)
{
m_displayTraceIntensity = intensity;
if (m_displayTraceIntensity > 100) {
m_displayTraceIntensity = 100;
} else if (m_displayTraceIntensity < 0) {
m_displayTraceIntensity = 0;
}
update();
}
void GLSpectrum::addChannelMarker(ChannelMarker* channelMarker)
{
QMutexLocker mutexLocker(&m_mutex);
connect(channelMarker, SIGNAL(changed()), this, SLOT(channelMarkerChanged()));
connect(channelMarker, SIGNAL(destroyed(QObject*)), this, SLOT(channelMarkerDestroyed(QObject*)));
m_channelMarkerStates.append(new ChannelMarkerState(channelMarker));
m_changesPending = true;
stopDrag();
update();
}
void GLSpectrum::removeChannelMarker(ChannelMarker* channelMarker)
{
QMutexLocker mutexLocker(&m_mutex);
for(int i = 0; i < m_channelMarkerStates.size(); ++i) {
if(m_channelMarkerStates[i]->m_channelMarker == channelMarker) {
channelMarker->disconnect(this);
delete m_channelMarkerStates.takeAt(i);
m_changesPending = true;
stopDrag();
update();
return;
}
}
}
void GLSpectrum::newSpectrum(const std::vector<Real>& spectrum, int fftSize)
{
QMutexLocker mutexLocker(&m_mutex);
m_displayChanged = true;
if(m_changesPending) {
m_fftSize = fftSize;
return;
}
if(fftSize != m_fftSize) {
m_fftSize = fftSize;
m_changesPending = true;
return;
}
updateWaterfall(spectrum);
updateHistogram(spectrum);
}
void GLSpectrum::updateWaterfall(const std::vector<Real>& spectrum)
{
if(m_waterfallBufferPos < m_waterfallBuffer->height()) {
quint32* pix = (quint32*)m_waterfallBuffer->scanLine(m_waterfallBufferPos);
for(int i = 0; i < m_fftSize; i++) {
int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0);
if(v > 239)
v = 239;
else if(v < 0)
v = 0;
*pix++ = m_waterfallPalette[(int)v];
}
m_waterfallBufferPos++;
}
}
void GLSpectrum::updateHistogram(const std::vector<Real>& spectrum)
{
quint8* b = m_histogram;
quint8* h = m_histogramHoldoff;
int sub = 1;
int fftMulSize = 100 * m_fftSize;
if(m_decay > 0)
sub += m_decay;
if (m_displayHistogram || m_displayMaxHold)
{
m_histogramHoldoffCount--;
if(m_histogramHoldoffCount <= 0)
{
for(int i = 0; i < fftMulSize; i++)
{
if((*b>>4) > 0) // *b > 16
{
*b = *b - sub;
}
else if(*b > 0)
{
if(*h >= sub)
{
*h = *h - sub;
}
else if(*h > 0)
{
*h = *h - 1;
}
else
{
*b = *b - 1;
*h = m_histogramLateHoldoff;
}
}
b++;
h++;
}
m_histogramHoldoffCount = m_histogramHoldoffBase;
}
}
m_currentSpectrum = &spectrum; // Store spectrum for current spectrum line display
#ifndef USE_SIMD
for(int i = 0; i < m_fftSize; i++) {
int v = (int)((spectrum[i] - m_referenceLevel) * 100.0 / m_powerRange + 100.0);
if ((v >= 0) && (v <= 99)) {
b = m_histogram + i * 100 + v;
if(*b < 220)
*b += m_histogramStroke; // was 4
else if(*b < 239)
*b += 1;
}
}
#else
if(m_decay >= 0) { // normal
const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
for(int i = 0; i < m_fftSize; i += 4) {
__m128 abc = _mm_loadu_ps (&spectrum[i]);
abc = _mm_sub_ps(abc, refl);
abc = _mm_mul_ps(abc, mul);
abc = _mm_div_ps(abc, power);
abc = _mm_add_ps(abc, mul);
__m128i result = _mm_cvtps_epi32(abc);
for(int j = 0; j < 4; j++) {
int v = ((int*)&result)[j];
if((v >= 0) && (v <= 99)) {
b = m_histogram + (i + j) * 100 + v;
if(*b < 220)
*b += m_histogramStroke; // was 4
else if(*b < 239)
*b += 1;
}
}
}
} else { // draw double pixels
int add = -m_decay * 4;
const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
for(int i = 0; i < m_fftSize; i += 4) {
__m128 abc = _mm_loadu_ps (&spectrum[i]);
abc = _mm_sub_ps(abc, refl);
abc = _mm_mul_ps(abc, mul);
abc = _mm_div_ps(abc, power);
abc = _mm_add_ps(abc, mul);
__m128i result = _mm_cvtps_epi32(abc);
for(int j = 0; j < 4; j++) {
int v = ((int*)&result)[j];
if((v >= 1) && (v <= 98)) {
b = m_histogram + (i + j) * 100 + v;
if(b[-1] < 220)
b[-1] += add;
else if(b[-1] < 239)
b[-1] += 1;
if(b[0] < 220)
b[0] += add;
else if(b[0] < 239)
b[0] += 1;
if(b[1] < 220)
b[1] += add;
else if(b[1] < 239)
b[1] += 1;
} else if((v >= 0) && (v <= 99)) {
b = m_histogram + (i + j) * 100 + v;
if(*b < 220)
*b += add;
else if(*b < 239)
*b += 1;
}
}
}
}
#endif
}
void GLSpectrum::initializeGL()
{
QOpenGLContext *glCurrentContext = QOpenGLContext::currentContext();
if (glCurrentContext) {
if (QOpenGLContext::currentContext()->isValid()) {
qDebug() << "GLSpectrum::initializeGL: context:"
<< " major: " << (QOpenGLContext::currentContext()->format()).majorVersion()
<< " minor: " << (QOpenGLContext::currentContext()->format()).minorVersion()
<< " ES: " << (QOpenGLContext::currentContext()->isOpenGLES() ? "yes" : "no");
}
else {
qDebug() << "GLSpectrum::initializeGL: current context is invalid";
}
} else {
qCritical() << "GLSpectrum::initializeGL: no current context";
return;
}
connect(glCurrentContext, &QOpenGLContext::aboutToBeDestroyed, this, &GLSpectrum::cleanup); // TODO: when migrating to QOpenGLWidget
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
glFunctions->initializeOpenGLFunctions();
//glDisable(GL_DEPTH_TEST);
m_glShaderSimple.initializeGL();
m_glShaderLeftScale.initializeGL();
m_glShaderFrequencyScale.initializeGL();
m_glShaderWaterfall.initializeGL();
m_glShaderHistogram.initializeGL();
}
void GLSpectrum::resizeGL(int width, int height)
{
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
glFunctions->glViewport(0, 0, width, height);
m_changesPending = true;
}
void GLSpectrum::clearSpectrumHistogram()
{
if(!m_mutex.tryLock(2))
return;
memset(m_histogram, 0x00, 100 * m_fftSize);
memset(m_histogramHoldoff, 0x07, 100 * m_fftSize);
m_mutex.unlock();
update();
}
void GLSpectrum::paintGL()
{
if(!m_mutex.tryLock(2))
return;
if(m_changesPending)
applyChanges();
if(m_fftSize <= 0) {
m_mutex.unlock();
return;
}
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
glFunctions->glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glFunctions->glClear(GL_COLOR_BUFFER_BIT);
// paint waterfall
if (m_displayWaterfall)
{
{
GLfloat vtx1[] = {
0, m_invertedWaterfall ? 0.0f : 1.0f,
1, m_invertedWaterfall ? 0.0f : 1.0f,
1, m_invertedWaterfall ? 1.0f : 0.0f,
0, m_invertedWaterfall ? 1.0f : 0.0f
};
if (m_waterfallTexturePos + m_waterfallBufferPos < m_waterfallTextureHeight)
{
m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_fftSize, m_waterfallBufferPos, m_waterfallBuffer->scanLine(0));
m_waterfallTexturePos += m_waterfallBufferPos;
}
else
{
int breakLine = m_waterfallTextureHeight - m_waterfallTexturePos;
int linesLeft = m_waterfallTexturePos + m_waterfallBufferPos - m_waterfallTextureHeight;
m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_fftSize, breakLine, m_waterfallBuffer->scanLine(0));
m_glShaderWaterfall.subTexture(0, 0, m_fftSize, linesLeft, m_waterfallBuffer->scanLine(breakLine));
m_waterfallTexturePos = linesLeft;
}
m_waterfallBufferPos = 0;
float prop_y = m_waterfallTexturePos / (m_waterfallTextureHeight - 1.0);
float off = 1.0 / (m_waterfallTextureHeight - 1.0);
GLfloat tex1[] = {
0, prop_y + 1 - off,
1, prop_y + 1 - off,
1, prop_y,
0, prop_y
};
m_glShaderWaterfall.drawSurface(m_glWaterfallBoxMatrix, tex1, vtx1, 4);
}
// paint channels
if (m_mouseInside)
{
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
if (dv->m_channelMarker->getVisible())
{
{
GLfloat q3[] {
0, 0,
1, 0,
1, 1,
0, 1,
0.5, 0,
0.5, 1,
};
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
m_glShaderSimple.drawSurface(dv->m_glMatrixWaterfall, color, q3, 4);
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbWaterfall, colorLine, &q3[8], 2);
}
}
}
}
// draw rect around
{
GLfloat q3[] {
1, 1,
0, 1,
0, 0,
1, 0
};
QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
m_glShaderSimple.drawContour(m_glWaterfallBoxMatrix, color, q3, 4);
}
}
// paint histogram
if(m_displayHistogram || m_displayMaxHold || m_displayCurrent)
{
if(m_displayHistogram)
{
{
// import new lines into the texture
quint32* pix;
quint8* bs = m_histogram;
for (int y = 0; y < 100; y++)
{
quint8* b = bs;
pix = (quint32*)m_histogramBuffer->scanLine(99 - y);
for (int x = 0; x < m_fftSize; x++)
{
*pix = m_histogramPalette[*b];
pix++;
b += 100;
}
bs++;
}
GLfloat vtx1[] = {
0, 0,
1, 0,
1, 1,
0, 1
};
GLfloat tex1[] = {
0, 0,
1, 0,
1, 1,
0, 1
};
m_glShaderHistogram.subTexture(0, 0, m_fftSize, 100, m_histogramBuffer->scanLine(0));
m_glShaderHistogram.drawSurface(m_glHistogramBoxMatrix, tex1, vtx1, 4);
}
}
// paint channels
if(m_mouseInside)
{
// Effective BW overlays
for(int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
if(dv->m_channelMarker->getVisible())
{
{
GLfloat q3[] {
0, 0,
1, 0,
1, 1,
0, 1,
0.5, 0,
0.5, 1
};
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
m_glShaderSimple.drawSurface(dv->m_glMatrixHistogram, color, q3, 4);
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
if (dv->m_channelMarker->getSidebands() != ChannelMarker::dsb) {
q3[6] = 0.5;
}
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbHistogram, colorLine, &q3[4], 4);
}
}
}
}
// draw rect around
{
GLfloat q3[] {
1, 1,
0, 1,
0, 0,
1, 0
};
QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
m_glShaderSimple.drawContour(m_glHistogramBoxMatrix, color, q3, 4);
}
}
// paint left scales (time and power)
if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram )
{
{
GLfloat vtx1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
GLfloat tex1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
m_glShaderLeftScale.drawSurface(m_glLeftScaleBoxMatrix, tex1, vtx1, 4);
}
}
// paint frequency scale
if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram )
{
{
GLfloat vtx1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
GLfloat tex1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
m_glShaderFrequencyScale.drawSurface(m_glFrequencyScaleBoxMatrix, tex1, vtx1, 4);
}
// paint channels
// Effective bandwidth overlays
for(int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
// frequency scale channel overlay
if(dv->m_channelMarker->getVisible())
{
{
GLfloat q3[] {
1, 0.2,
0, 0.2,
0, 0,
1, 0,
0.5, 0,
0.5, 1
};
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.5f);
m_glShaderSimple.drawSurface(dv->m_glMatrixFreqScale, color, q3, 4);
if (dv->m_channelMarker->getHighlighted())
{
if (dv->m_channelMarker->getSidebands() != ChannelMarker::dsb) {
q3[4] = 0.5;
}
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbFreqScale, colorLine, &q3[4], 4);
}
}
}
}
}
// paint max hold lines on top of histogram
if (m_displayMaxHold)
{
if (m_maxHold.size() < (uint)m_fftSize)
m_maxHold.resize(m_fftSize);
for(int i = 0; i < m_fftSize; i++)
{
int j;
quint8* bs = m_histogram + i * 100;
for(j = 99; j > 1; j--) {
if(bs[j] > 0)
break;
}
// TODO: ((bs[j] * (float)j) + (bs[j + 1] * (float)(j + 1))) / (bs[j] + bs[j + 1])
j = j - 99;
m_maxHold[i] = (j * m_powerRange) / 99.0 + m_referenceLevel;
}
{
GLfloat q3[2*m_fftSize];
Real bottom = -m_powerRange;
for(int i = 0; i < m_fftSize; i++) {
Real v = m_maxHold[i] - m_referenceLevel;
if(v > 0)
v = 0;
else if(v < bottom)
v = bottom;
q3[2*i] = (Real) i;
q3[2*i+1] = v;
}
QVector4D color(1.0f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f);
m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_fftSize);
}
}
// paint current spectrum line on top of histogram
if ((m_displayCurrent) && m_currentSpectrum)
{
{
Real bottom = -m_powerRange;
GLfloat q3[2*m_fftSize];
for(int i = 0; i < m_fftSize; i++) {
Real v = (*m_currentSpectrum)[i] - m_referenceLevel;
if(v > 0)
v = 0;
else if(v < bottom)
v = bottom;
q3[2*i] = (Real) i;
q3[2*i+1] = v;
}
QVector4D color(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f);
m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_fftSize);
}
}
// paint waterfall grid
if(m_displayWaterfall && m_displayGrid)
{
const ScaleEngine::TickList* tickList;
const ScaleEngine::Tick* tick;
tickList = &m_timeScale.getTickList();
{
GLfloat q3[4*tickList->count()];
int effectiveTicks = 0;
for (int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if (tick->major)
{
if(tick->textSize > 0)
{
float y = tick->pos / m_timeScale.getSize();
q3[4*effectiveTicks] = 0;
q3[4*effectiveTicks+1] = y;
q3[4*effectiveTicks+2] = 1;
q3[4*effectiveTicks+3] = y;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
}
tickList = &m_frequencyScale.getTickList();
{
GLfloat q3[4*tickList->count()];
int effectiveTicks = 0;
for (int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if (tick->major)
{
if (tick->textSize > 0)
{
float x = tick->pos / m_frequencyScale.getSize();
q3[4*effectiveTicks] = x;
q3[4*effectiveTicks+1] = 0;
q3[4*effectiveTicks+2] = x;
q3[4*effectiveTicks+3] = 1;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
}
}
// paint histogram grid
if((m_displayHistogram || m_displayMaxHold || m_displayCurrent) && (m_displayGrid))
{
const ScaleEngine::TickList* tickList;
const ScaleEngine::Tick* tick;
tickList = &m_powerScale.getTickList();
{
GLfloat q3[4*tickList->count()];
int effectiveTicks = 0;
for(int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if(tick->major)
{
if(tick->textSize > 0)
{
float y = tick->pos / m_powerScale.getSize();
q3[4*effectiveTicks] = 0;
q3[4*effectiveTicks+1] = 1-y;
q3[4*effectiveTicks+2] = 1;
q3[4*effectiveTicks+3] = 1-y;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
}
tickList = &m_frequencyScale.getTickList();
{
GLfloat q3[4*tickList->count()];
int effectiveTicks = 0;
for(int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if(tick->major)
{
if(tick->textSize > 0)
{
float x = tick->pos / m_frequencyScale.getSize();
q3[4*effectiveTicks] = x;
q3[4*effectiveTicks+1] = 0;
q3[4*effectiveTicks+2] = x;
q3[4*effectiveTicks+3] = 1;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
}
}
m_mutex.unlock();
}
void GLSpectrum::stopDrag()
{
if(m_cursorState != CSNormal) {
if((m_cursorState == CSSplitterMoving) || (m_cursorState == CSChannelMoving))
releaseMouse();
setCursor(Qt::ArrowCursor);
m_cursorState = CSNormal;
}
}
void GLSpectrum::applyChanges()
{
m_changesPending = false;
if(m_fftSize <= 0)
return;
QFontMetrics fm(font());
int M = fm.width("-");
int topMargin = fm.ascent() * 1.5;
int bottomMargin = fm.ascent() * 1.5;
int waterfallHeight = 0;
int waterfallTop = 0;
int frequencyScaleHeight = fm.height() * 3; // +1 line for marker frequency scale
int frequencyScaleTop;
int histogramTop = 0;
int histogramHeight = 20;
int leftMargin;
int rightMargin = fm.width("000");
// displays both histogram and waterfall
if(m_displayWaterfall && (m_displayHistogram | m_displayMaxHold | m_displayCurrent))
{
waterfallHeight = height() * m_waterfallShare - 1;
if(waterfallHeight < 0)
{
waterfallHeight = 0;
}
if(!m_invertedWaterfall)
{
waterfallTop = topMargin;
frequencyScaleTop = waterfallTop + waterfallHeight + 1;
histogramTop = waterfallTop + waterfallHeight + frequencyScaleHeight + 1;
histogramHeight = height() - topMargin - waterfallHeight - frequencyScaleHeight - bottomMargin;
}
else
{
histogramTop = topMargin;
histogramHeight = height() - topMargin - waterfallHeight - frequencyScaleHeight - bottomMargin;
waterfallTop = histogramTop + histogramHeight + frequencyScaleHeight + 1;
frequencyScaleTop = histogramTop + histogramHeight + 1;
}
m_timeScale.setSize(waterfallHeight);
if(m_sampleRate > 0)
{
float scaleDiv = (float)m_sampleRate * (m_ssbSpectrum ? 2 : 1);
if(!m_invertedWaterfall)
{
m_timeScale.setRange(Unit::Time, (waterfallHeight * m_fftSize) / scaleDiv, 0);
}
else
{
m_timeScale.setRange(Unit::Time, 0, (waterfallHeight * m_fftSize) / scaleDiv);
}
}
else
{
m_timeScale.setRange(Unit::Time, 0, 1);
}
m_powerScale.setSize(histogramHeight);
m_powerScale.setRange(Unit::Decibel, m_referenceLevel - m_powerRange, m_referenceLevel);
leftMargin = m_timeScale.getScaleWidth();
if(m_powerScale.getScaleWidth() > leftMargin)
{
leftMargin = m_powerScale.getScaleWidth();
}
leftMargin += 2 * M;
m_frequencyScale.setSize(width() - leftMargin - rightMargin);
m_frequencyScale.setRange(Unit::Frequency, m_centerFrequency - m_sampleRate / 2, m_centerFrequency + m_sampleRate / 2);
m_glWaterfallBoxMatrix.setToIdentity();
m_glWaterfallBoxMatrix.translate(
-1.0f + ((float)(2*leftMargin) / (float) width()),
1.0f - ((float)(2*waterfallTop) / (float) height())
);
m_glWaterfallBoxMatrix.scale(
((float) 2 * (width() - leftMargin - rightMargin)) / (float) width(),
(float) (-2*waterfallHeight) / (float) height()
);
m_glHistogramBoxMatrix.setToIdentity();
m_glHistogramBoxMatrix.translate(
-1.0f + ((float)(2*leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramBoxMatrix.scale(
((float) 2 * (width() - leftMargin - rightMargin)) / (float) width(),
(float) (-2*histogramHeight) / (float) height()
);
m_glHistogramSpectrumMatrix.setToIdentity();
m_glHistogramSpectrumMatrix.translate(
-1.0f + ((float)(2*leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramSpectrumMatrix.scale(
((float) 2 * (width() - leftMargin - rightMargin)) / ((float) width() * (float)(m_fftSize - 1)),
((float) 2*histogramHeight / height()) / m_powerRange
);
m_frequencyScaleRect = QRect(
0,
frequencyScaleTop,
width(),
frequencyScaleHeight
);
m_glFrequencyScaleBoxMatrix.setToIdentity();
m_glFrequencyScaleBoxMatrix.translate (
-1.0f,
1.0f - ((float) 2*frequencyScaleTop / (float) height())
);
m_glFrequencyScaleBoxMatrix.scale (
2.0f,
(float) -2*frequencyScaleHeight / (float) height()
);
m_glLeftScaleBoxMatrix.setToIdentity();
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
m_glLeftScaleBoxMatrix.scale(
(float)(2*(leftMargin - 1)) / (float) width(),
-2.0f
);
}
// displays waterfall only
else if(m_displayWaterfall)
{
bottomMargin = frequencyScaleHeight;
waterfallTop = topMargin;
waterfallHeight = height() - topMargin - frequencyScaleHeight;
frequencyScaleTop = topMargin + waterfallHeight + 1;
histogramTop = 0;
m_timeScale.setSize(waterfallHeight);
if(m_sampleRate > 0)
{
float scaleDiv = (float)m_sampleRate * (m_ssbSpectrum ? 2 : 1);
if(!m_invertedWaterfall)
{
m_timeScale.setRange(Unit::Time, (waterfallHeight * m_fftSize) / scaleDiv, 0);
}
else
{
m_timeScale.setRange(Unit::Time, 0, (waterfallHeight * m_fftSize) / scaleDiv);
}
}
else
{
if(!m_invertedWaterfall)
{
m_timeScale.setRange(Unit::Time, 10, 0);
}
else
{
m_timeScale.setRange(Unit::Time, 0, 10);
}
}
leftMargin = m_timeScale.getScaleWidth();
leftMargin += 2 * M;
m_frequencyScale.setSize(width() - leftMargin - rightMargin);
m_frequencyScale.setRange(Unit::Frequency, m_centerFrequency - m_sampleRate / 2.0, m_centerFrequency + m_sampleRate / 2.0);
m_glWaterfallBoxMatrix.setToIdentity();
m_glWaterfallBoxMatrix.translate(
-1.0f + ((float)(2*leftMargin) / (float) width()),
1.0f - ((float)(2*topMargin) / (float) height())
);
m_glWaterfallBoxMatrix.scale(
((float) 2 * (width() - leftMargin - rightMargin)) / (float) width(),
(float) (-2*waterfallHeight) / (float) height()
);
m_frequencyScaleRect = QRect(
0,
frequencyScaleTop,
width(),
frequencyScaleHeight
);
m_glFrequencyScaleBoxMatrix.setToIdentity();
m_glFrequencyScaleBoxMatrix.translate (
-1.0f,
1.0f - ((float) 2*frequencyScaleTop / (float) height())
);
m_glFrequencyScaleBoxMatrix.scale (
2.0f,
(float) -2*frequencyScaleHeight / (float) height()
);
m_glLeftScaleBoxMatrix.setToIdentity();
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
m_glLeftScaleBoxMatrix.scale(
(float)(2*(leftMargin - 1)) / (float) width(),
-2.0f
);
}
// displays histogram only
else if(m_displayHistogram || m_displayMaxHold || m_displayCurrent)
{
bottomMargin = frequencyScaleHeight;
frequencyScaleTop = height() - bottomMargin;
histogramTop = topMargin - 1;
waterfallHeight = 0;
histogramHeight = height() - topMargin - frequencyScaleHeight;
m_powerScale.setSize(histogramHeight);
m_powerScale.setRange(Unit::Decibel, m_referenceLevel - m_powerRange, m_referenceLevel);
leftMargin = m_powerScale.getScaleWidth();
leftMargin += 2 * M;
m_frequencyScale.setSize(width() - leftMargin - rightMargin);
m_frequencyScale.setRange(Unit::Frequency, m_centerFrequency - m_sampleRate / 2, m_centerFrequency + m_sampleRate / 2);
m_glHistogramSpectrumMatrix.setToIdentity();
m_glHistogramSpectrumMatrix.translate(
-1.0f + ((float)(2*leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramSpectrumMatrix.scale(
((float) 2 * (width() - leftMargin - rightMargin)) / ((float) width() * (float)(m_fftSize - 1)),
((float) 2*(height() - topMargin - frequencyScaleHeight) / height()) / m_powerRange
);
m_glHistogramBoxMatrix.setToIdentity();
m_glHistogramBoxMatrix.translate(
-1.0f + ((float)(2*leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramBoxMatrix.scale(
((float) 2 * (width() - leftMargin - rightMargin)) / (float) width(),
(float) (-2*(height() - topMargin - frequencyScaleHeight)) / (float) height()
);
m_frequencyScaleRect = QRect(
0,
frequencyScaleTop,
width(),
frequencyScaleHeight
);
m_glFrequencyScaleBoxMatrix.setToIdentity();
m_glFrequencyScaleBoxMatrix.translate (
-1.0f,
1.0f - ((float) 2*frequencyScaleTop / (float) height())
);
m_glFrequencyScaleBoxMatrix.scale (
2.0f,
(float) -2*frequencyScaleHeight / (float) height()
);
m_glLeftScaleBoxMatrix.setToIdentity();
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
m_glLeftScaleBoxMatrix.scale(
(float)(2*(leftMargin - 1)) / (float) width(),
-2.0f
);
}
else
{
leftMargin = 2;
waterfallHeight = 0;
}
// channel overlays
for(int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
qreal xc, pw, nw, dsbw;
ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
dsbw = dv->m_channelMarker->getBandwidth();
if (sidebands == ChannelMarker::usb) {
nw = dv->m_channelMarker->getLowCutoff(); // negative bandwidth
pw = dv->m_channelMarker->getBandwidth() / 2; // positive bandwidth
} else if (sidebands == ChannelMarker::lsb) {
pw = dv->m_channelMarker->getLowCutoff();
nw = dv->m_channelMarker->getBandwidth() / 2;
} else {
pw = dsbw / 2;
nw = -pw;
}
// draw the DSB rectangle
QMatrix4x4 glMatrixDsb;
glMatrixDsb.setToIdentity();
glMatrixDsb.translate(
-1.0f + 2.0f * ((leftMargin + m_frequencyScale.getPosFromValue(xc - (dsbw/2))) / (float) width()),
1.0f
);
glMatrixDsb.scale(
2.0f * (dsbw / (float)m_sampleRate),
-2.0f
);
dv->m_glMatrixDsbWaterfall = glMatrixDsb;
dv->m_glMatrixDsbWaterfall.translate(
0.0f,
(float) waterfallTop / (float) height()
);
dv->m_glMatrixDsbWaterfall.scale(
(float) (width() - leftMargin - rightMargin) / (float) width(),
(float) waterfallHeight / (float) height()
);
dv->m_glMatrixDsbHistogram = glMatrixDsb;
dv->m_glMatrixDsbHistogram.translate(
0.0f,
(float) histogramTop / (float) height()
);
dv->m_glMatrixDsbHistogram.scale(
(float) (width() - leftMargin - rightMargin) / (float) width(),
(float) histogramHeight / (float) height()
);
dv->m_glMatrixDsbFreqScale = glMatrixDsb;
dv->m_glMatrixDsbFreqScale.translate(
0.0f,
(float) frequencyScaleTop / (float) height()
);
dv->m_glMatrixDsbFreqScale.scale(
(float) (width() - leftMargin - rightMargin) / (float) width(),
(float) frequencyScaleHeight / (float) height()
);
// draw the effective BW rectangle
QMatrix4x4 glMatrix;
glMatrix.setToIdentity();
glMatrix.translate(
-1.0f + 2.0f * ((leftMargin + m_frequencyScale.getPosFromValue(xc + nw)) / (float) width()),
1.0f
);
glMatrix.scale(
2.0f * ((pw-nw) / (float)m_sampleRate),
-2.0f
);
dv->m_glMatrixWaterfall = glMatrix;
dv->m_glMatrixWaterfall.translate(
0.0f,
(float) waterfallTop / (float) height()
);
dv->m_glMatrixWaterfall.scale(
(float) (width() - leftMargin - rightMargin) / (float) width(),
(float) waterfallHeight / (float) height()
);
dv->m_glMatrixHistogram = glMatrix;
dv->m_glMatrixHistogram.translate(
0.0f,
(float) histogramTop / (float) height()
);
dv->m_glMatrixHistogram.scale(
(float) (width() - leftMargin - rightMargin) / (float) width(),
(float) histogramHeight / (float) height()
);
dv->m_glMatrixFreqScale = glMatrix;
dv->m_glMatrixFreqScale.translate(
0.0f,
(float) frequencyScaleTop / (float) height()
);
dv->m_glMatrixFreqScale.scale(
(float) (width() - leftMargin - rightMargin) / (float) width(),
(float) frequencyScaleHeight / (float) height()
);
/*
dv->m_glRect.setRect(
m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency() - dv->m_channelMarker->getBandwidth() / 2) / (float)(width() - leftMargin - rightMargin),
0,
(dv->m_channelMarker->getBandwidth() / (float)m_sampleRate),
1);
*/
if(m_displayHistogram || m_displayMaxHold || m_displayCurrent || m_displayWaterfall)
{
dv->m_rect.setRect(m_frequencyScale.getPosFromValue(xc) + leftMargin - 1,
topMargin,
5,
height() - topMargin - bottomMargin);
}
/*
if(m_displayHistogram || m_displayMaxHold || m_displayWaterfall) {
dv->m_rect.setRect(m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency()) + leftMargin - 1,
topMargin,
5,
height() - topMargin - bottomMargin);
}
*/
}
// prepare left scales (time and power)
{
m_leftMarginPixmap = QPixmap(leftMargin - 1, height());
m_leftMarginPixmap.fill(Qt::black);
{
QPainter painter(&m_leftMarginPixmap);
painter.setPen(QColor(0xf0, 0xf0, 0xff));
painter.setFont(font());
const ScaleEngine::TickList* tickList;
const ScaleEngine::Tick* tick;
if(m_displayWaterfall) {
tickList = &m_timeScale.getTickList();
for(int i = 0; i < tickList->count(); i++) {
tick = &(*tickList)[i];
if(tick->major) {
if(tick->textSize > 0)
painter.drawText(QPointF(leftMargin - M - tick->textSize, waterfallTop + fm.ascent() + tick->textPos), tick->text);
}
}
}
if(m_displayHistogram || m_displayMaxHold || m_displayCurrent) {
tickList = &m_powerScale.getTickList();
for(int i = 0; i < tickList->count(); i++) {
tick = &(*tickList)[i];
if(tick->major) {
if(tick->textSize > 0)
painter.drawText(QPointF(leftMargin - M - tick->textSize, histogramTop + histogramHeight - tick->textPos - 1), tick->text);
}
}
}
}
m_glShaderLeftScale.initTexture(m_leftMarginPixmap.toImage());
}
// prepare frequency scale
if(m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent){
m_frequencyPixmap = QPixmap(width(), frequencyScaleHeight);
m_frequencyPixmap.fill(Qt::transparent);
{
QPainter painter(&m_frequencyPixmap);
painter.setPen(Qt::NoPen);
painter.setBrush(Qt::black);
painter.setBrush(Qt::transparent);
painter.drawRect(leftMargin, 0, width() - leftMargin, frequencyScaleHeight);
painter.setPen(QColor(0xf0, 0xf0, 0xff));
painter.setFont(font());
const ScaleEngine::TickList* tickList = &m_frequencyScale.getTickList();
const ScaleEngine::Tick* tick;
for(int i = 0; i < tickList->count(); i++) {
tick = &(*tickList)[i];
if(tick->major) {
if(tick->textSize > 0)
painter.drawText(QPointF(leftMargin + tick->textPos, fm.height() + fm.ascent() / 2 - 1), tick->text);
}
}
// Frequency overlay on highlighted marker
for(int i = 0; i < m_channelMarkerStates.size(); ++i) {
ChannelMarkerState* dv = m_channelMarkerStates[i];
if (dv->m_channelMarker->getHighlighted())
{
qreal xc;
int shift;
//ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
QString ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6);
if (dv->m_channelMarker->getCenterFrequency() < 0) { // left half of scale
ftext = " " + ftext;
shift = 0;
} else { // right half of scale
ftext = ftext + " ";
shift = - fm.width(ftext);
}
painter.drawText(QPointF(leftMargin + m_frequencyScale.getPosFromValue(xc) + shift, 2*fm.height() + fm.ascent() / 2 - 1), ftext);
}
}
}
m_glShaderFrequencyScale.initTexture(m_frequencyPixmap.toImage());
}
bool fftSizeChanged = true;
if(m_waterfallBuffer != NULL) {
fftSizeChanged = m_waterfallBuffer->width() != m_fftSize;
}
bool windowSizeChanged = m_waterfallTextureHeight != waterfallHeight;
if (fftSizeChanged || windowSizeChanged)
{
if(m_waterfallBuffer != 0) {
delete m_waterfallBuffer;
}
m_waterfallBuffer = new QImage(m_fftSize, waterfallHeight, QImage::Format_ARGB32);
if(m_waterfallBuffer != 0)
{
m_waterfallBuffer->fill(qRgb(0x00, 0x00, 0x00));
m_glShaderWaterfall.initTexture(*m_waterfallBuffer);
m_waterfallBufferPos = 0;
}
else
{
m_fftSize = 0;
m_changesPending = true;
return;
}
}
if(fftSizeChanged)
{
if(m_histogramBuffer != NULL) {
delete m_histogramBuffer;
m_histogramBuffer = NULL;
}
if(m_histogram != NULL) {
delete[] m_histogram;
m_histogram = NULL;
}
if(m_histogramHoldoff != NULL) {
delete[] m_histogramHoldoff;
m_histogramHoldoff = NULL;
}
m_histogramBuffer = new QImage(m_fftSize, 100, QImage::Format_RGB32);
if(m_histogramBuffer != NULL)
{
m_histogramBuffer->fill(qRgb(0x00, 0x00, 0x00));
m_glShaderHistogram.initTexture(*m_histogramBuffer, QOpenGLTexture::ClampToEdge);
}
else
{
m_fftSize = 0;
m_changesPending = true;
return;
}
m_histogram = new quint8[100 * m_fftSize];
memset(m_histogram, 0x00, 100 * m_fftSize);
m_histogramHoldoff = new quint8[100 * m_fftSize];
memset(m_histogramHoldoff, 0x07, 100 * m_fftSize);
}
if(fftSizeChanged || windowSizeChanged)
{
m_waterfallTextureHeight = waterfallHeight;
m_waterfallTexturePos = 0;
}
}
void GLSpectrum::mouseMoveEvent(QMouseEvent* event)
{
if(m_displayWaterfall && (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent)) {
if(m_frequencyScaleRect.contains(event->pos())) {
if(m_cursorState == CSNormal) {
setCursor(Qt::SizeVerCursor);
m_cursorState = CSSplitter;
return;
}
} else {
if(m_cursorState == CSSplitter) {
setCursor(Qt::ArrowCursor);
m_cursorState = CSNormal;
return;
}
}
}
if(m_cursorState == CSSplitterMoving) {
float newShare;
if(!m_invertedWaterfall)
newShare = (float)(event->y() - m_frequencyScaleRect.height()) / (float)height();
else newShare = 1.0 - (float)(event->y() + m_frequencyScaleRect.height()) / (float)height();
if(newShare < 0.1)
newShare = 0.1f;
else if(newShare > 0.8)
newShare = 0.8f;
m_waterfallShare = newShare;
m_changesPending = true;
update();
return;
} else if(m_cursorState == CSChannelMoving) {
Real freq = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1) - m_centerFrequency;
if(m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getColor()!=Qt::blue)
m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequency(freq);
}
if(m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent) {
for(int i = 0; i < m_channelMarkerStates.size(); ++i) {
if(m_channelMarkerStates[i]->m_rect.contains(event->pos())) {
if(m_cursorState == CSNormal) {
setCursor(Qt::SizeHorCursor);
m_cursorState = CSChannel;
m_cursorChannel = i;
m_channelMarkerStates[i]->m_channelMarker->setHighlighted(true);
return;
} else if(m_cursorState == CSChannel) {
return;
}
} else if (m_channelMarkerStates[i]->m_channelMarker->getHighlighted()) {
m_channelMarkerStates[i]->m_channelMarker->setHighlighted(false);
}
}
}
if(m_cursorState == CSChannel) {
setCursor(Qt::ArrowCursor);
m_cursorState = CSNormal;
return;
}
}
void GLSpectrum::mousePressEvent(QMouseEvent* event)
{
if(event->button() != 1)
return;
if(m_cursorState == CSSplitter) {
grabMouse();
m_cursorState = CSSplitterMoving;
return;
} else if(m_cursorState == CSChannel) {
grabMouse();
m_cursorState = CSChannelMoving;
return;
} else if((m_cursorState == CSNormal) && (m_channelMarkerStates.size() == 1)) {
grabMouse();
setCursor(Qt::SizeHorCursor);
m_cursorState = CSChannelMoving;
m_cursorChannel = 0;
Real freq = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1) - m_centerFrequency;
if(m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getColor()!=Qt::blue)
m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequency(freq);
return;
}
}
void GLSpectrum::mouseReleaseEvent(QMouseEvent*)
{
if(m_cursorState == CSSplitterMoving) {
releaseMouse();
m_cursorState = CSSplitter;
} else if(m_cursorState == CSChannelMoving) {
releaseMouse();
m_cursorState = CSChannel;
}
}
void GLSpectrum::enterEvent(QEvent* event)
{
m_mouseInside = true;
update();
QGLWidget::enterEvent(event);
}
void GLSpectrum::leaveEvent(QEvent* event)
{
m_mouseInside = false;
update();
QGLWidget::enterEvent(event);
}
void GLSpectrum::tick()
{
if(m_displayChanged) {
m_displayChanged = false;
update();
}
}
void GLSpectrum::channelMarkerChanged()
{
m_changesPending = true;
update();
}
void GLSpectrum::channelMarkerDestroyed(QObject* object)
{
removeChannelMarker((ChannelMarker*)object);
}
void GLSpectrum::setWaterfallShare(Real waterfallShare)
{
if (waterfallShare < 0.1f) {
m_waterfallShare = 0.1f;
}
else if (waterfallShare > 0.8f) {
m_waterfallShare = 0.8f;
} else {
m_waterfallShare = waterfallShare;
}
m_changesPending = true;
}
void GLSpectrum::connectTimer(const QTimer& timer)
{
qDebug() << "GLSpectrum::connectTimer";
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
connect(&timer, SIGNAL(timeout()), this, SLOT(tick()));
m_timer.stop();
}
void GLSpectrum::cleanup()
{
//makeCurrent();
m_glShaderSimple.cleanup();
m_glShaderFrequencyScale.cleanup();
m_glShaderHistogram.cleanup();
m_glShaderLeftScale.cleanup();
m_glShaderWaterfall.cleanup();
//doneCurrent();
}