1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/plugins/channelrx/wdsprx/wdsprxsink.cpp
2024-08-05 20:05:59 +02:00

820 lines
27 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <QTime>
#include <QDebug>
#include "dsp/spectrumvis.h"
#include "dsp/datafifo.h"
#include "util/db.h"
#include "util/messagequeue.h"
#include "maincore.h"
#include "RXA.hpp"
#include "meter.hpp"
#include "patchpanel.hpp"
#include "wcpAGC.hpp"
#include "anr.hpp"
#include "emnr.hpp"
#include "snba.hpp"
#include "anf.hpp"
#include "anb.hpp"
#include "nob.hpp"
#include "amd.hpp"
#include "fmd.hpp"
#include "ssql.hpp"
#include "amsq.hpp"
#include "fmsq.hpp"
#include "eqp.hpp"
#include "shift.hpp"
#include "speak.hpp"
#include "wdsprxsink.h"
const int WDSPRxSink::m_ssbFftLen = 2048;
const int WDSPRxSink::m_wdspSampleRate = 48000;
const int WDSPRxSink::m_wdspBufSize = 512;
WDSPRxSink::SpectrumProbe::SpectrumProbe(SampleVector& sampleVector) :
m_sampleVector(sampleVector),
m_spanLog2(0),
m_dsb(false),
m_usb(true),
m_sum(0)
{}
void WDSPRxSink::SpectrumProbe::setSpanLog2(int spanLog2)
{
m_spanLog2 = spanLog2;
}
void WDSPRxSink::SpectrumProbe::proceed(const float *in, int nb_samples)
{
int decim = 1<<(m_spanLog2 - 1);
unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
for (int i = 0; i < nb_samples; i++)
{
float cr = in[2*i+1];
float ci = in[2*i];
m_sum += std::complex<float>{cr, ci};
if (decim == 1)
{
m_sampleVector.push_back(Sample(cr*SDR_RX_SCALEF, ci*SDR_RX_SCALEF));
}
else
{
if (!(m_undersampleCount++ & decim_mask))
{
float avgr = m_sum.real() / (float) decim;
float avgi = m_sum.imag() / (float) decim;
if (!m_dsb && !m_usb)
{ // invert spectrum for LSB
m_sampleVector.push_back(Sample(avgi*SDR_RX_SCALEF, avgr*SDR_RX_SCALEF));
}
else
{
m_sampleVector.push_back(Sample(avgr*SDR_RX_SCALEF, avgi*SDR_RX_SCALEF));
}
m_sum = 0;
}
}
}
}
WDSPRxSink::WDSPRxSink() :
m_squelchDelayLine(2*48000),
m_audioActive(false),
m_spectrumSink(nullptr),
m_spectrumProbe(m_sampleBuffer),
m_inCount(0),
m_audioFifo(24000),
m_audioSampleRate(48000)
{
m_Bandwidth = 5000;
m_channelSampleRate = 48000;
m_channelFrequencyOffset = 0;
m_audioBuffer.resize(m_audioSampleRate / 10);
m_audioBufferFill = 0;
m_undersampleCount = 0;
m_demodBuffer.resize(1<<12);
m_demodBufferFill = 0;
m_sAvg = 0.0;
m_sPeak = 0.0;
m_sCount = m_wdspBufSize;
m_rxa = new WDSP::RXA(
m_wdspSampleRate, // input samplerate
m_wdspSampleRate, // output samplerate
m_wdspSampleRate, // sample rate for mainstream dsp processing (dsp)
m_wdspBufSize // number complex samples processed per buffer in mainstream dsp processing
);
m_rxa->setSpectrumProbe(&m_spectrumProbe);
m_rxa->setPassband(0, m_Bandwidth);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
WDSPRxSink::~WDSPRxSink()
{
delete m_rxa;
}
void WDSPRxSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
if (m_channelSampleRate == 0) {
return;
}
Complex ci;
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples) const
{
avg = m_sAvg;
peak = m_sPeak;
nbSamples = m_sCount;
}
void WDSPRxSink::processOneSample(const Complex &ci)
{
m_rxa->get_inbuff()[2*m_inCount] = ci.imag() / SDR_RX_SCALEF;
m_rxa->get_inbuff()[2*m_inCount+1] = ci.real() / SDR_RX_SCALEF;
if (++m_inCount == m_rxa->get_insize())
{
m_rxa->execute();
m_sCount = m_wdspBufSize;
m_sAvg = m_rxa->smeter->getMeter(WDSP::RXA::RXA_S_AV);
m_sPeak = m_rxa->smeter->getMeter(WDSP::RXA::RXA_S_PK);
for (int i = 0; i < m_rxa->get_outsize(); i++)
{
if (m_settings.m_audioMute)
{
m_audioBuffer[m_audioBufferFill].r = 0;
m_audioBuffer[m_audioBufferFill].l = 0;
}
else
{
const double& dr = m_rxa->get_outbuff()[2*i+1];
const double& di = m_rxa->get_outbuff()[2*i];
qint16 zr = dr * 32768.0;
qint16 zi = di * 32768.0;
m_audioBuffer[m_audioBufferFill].r = zr;
m_audioBuffer[m_audioBufferFill].l = zi;
if (m_settings.m_audioBinaural)
{
m_demodBuffer[m_demodBufferFill++] = zr;
m_demodBuffer[m_demodBufferFill++] = zi;
}
else
{
Real demod = (zr + zi) * 0.7;
auto sample = (qint16)(demod);
m_demodBuffer[m_demodBufferFill++] = sample;
}
if (m_demodBufferFill >= m_demodBuffer.size())
{
QList<ObjectPipe*> dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (!dataPipes.empty())
{
for (auto dataPipe : dataPipes)
{
DataFifo *fifo = qobject_cast<DataFifo*>(dataPipe->m_element);
if (fifo)
{
fifo->write(
(quint8*) &m_demodBuffer[0],
m_demodBuffer.size() * sizeof(qint16),
m_settings.m_audioBinaural ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16
);
}
}
}
m_demodBufferFill = 0;
}
} // audio sample
if (++m_audioBufferFill == m_audioBuffer.size())
{
std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size()));
if (res != m_audioBufferFill) {
qDebug("WDSPRxSink::processOneSample: %lu/%lu samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
}
} // result loop
if (m_spectrumSink && (m_sampleBuffer.size() != 0))
{
m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb);
m_sampleBuffer.clear();
}
m_inCount = 0;
}
}
void WDSPRxSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "WDSPRxSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > channelSampleRate ? channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_wdspSampleRate;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void WDSPRxSink::applyAudioSampleRate(int sampleRate)
{
qDebug("WDSPRxSink::applyAudioSampleRate: %d", sampleRate);
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_wdspSampleRate;
m_rxa->setOutputSamplerate(sampleRate);
m_audioFifo.setSize(sampleRate);
m_audioSampleRate = sampleRate;
m_audioBuffer.resize(sampleRate / 10);
m_audioBufferFill = 0;
QList<ObjectPipe*> pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (!pipes.empty())
{
for (const auto& pipe : pipes)
{
MessageQueue* messageQueue = qobject_cast<MessageQueue*>(pipe->m_element);
if (messageQueue)
{
MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
messageQueue->push(msg);
}
}
}
}
void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
{
qDebug() << "WDSPRxSink::applySettings:"
<< " m_demod: " << settings.m_demod
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_profileIndex: " << settings.m_profileIndex
<< " m_spanLog2: " << settings.m_profiles[settings.m_profileIndex].m_spanLog2
<< " m_highCutoff: " << settings.m_profiles[settings.m_profileIndex].m_highCutoff
<< " m_lowCutoff: " << settings.m_profiles[settings.m_profileIndex].m_lowCutoff
<< " m_fftWindow: " << settings.m_profiles[settings.m_profileIndex].m_fftWindow << "]"
<< " m_volume: " << settings.m_volume
<< " m_audioBinaural: " << settings.m_audioBinaural
<< " m_audioFlipChannels: " << settings.m_audioFlipChannels
<< " m_dsb: " << settings.m_dsb
<< " m_audioMute: " << settings.m_audioMute
<< " m_agc: " << settings.m_agc
<< " m_agcMode: " << settings.m_agcMode
<< " m_agcGain: " << settings.m_agcGain
<< " m_agcSlope: " << settings.m_agcSlope
<< " m_agcHangThreshold: " << settings.m_agcHangThreshold
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " m_dnr: " << settings.m_dnr
<< " m_nrScheme: " << settings.m_nrScheme
<< " m_nrPosition: "<< settings.m_nrPosition
<< " m_nr2Gain: " << settings.m_nr2Gain
<< " m_nr2NPE: " << settings.m_nr2NPE
<< " m_nr2ArtifactReduction: " << settings.m_nr2ArtifactReduction
<< " m_rit: " << settings.m_rit
<< " m_ritFrequency: " << settings.m_ritFrequency
<< " m_streamIndex: " << settings.m_streamIndex
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
// RIT
if ((m_settings.m_rit != settings.m_rit) || (m_settings.m_ritFrequency != settings.m_ritFrequency) || force)
{
m_rxa->shift->SetFreq(settings.m_ritFrequency);
m_rxa->shift->SetRun(settings.m_rit ? 1 : 0);
}
// Filter and mode
if((m_settings.m_profiles[m_settings.m_profileIndex].m_highCutoff != settings.m_profiles[settings.m_profileIndex].m_highCutoff) ||
(m_settings.m_profiles[m_settings.m_profileIndex].m_lowCutoff != settings.m_profiles[settings.m_profileIndex].m_lowCutoff) ||
(m_settings.m_profiles[m_settings.m_profileIndex].m_fftWindow != settings.m_profiles[settings.m_profileIndex].m_fftWindow) ||
(m_settings.m_demod != settings.m_demod) ||
(m_settings.m_dsb != settings.m_dsb) || force)
{
float band;
float low;
float high;
float fLow;
float fHigh;
bool usb;
bool dsb;
band = settings.m_profiles[settings.m_profileIndex].m_highCutoff;
high = band;
low = settings.m_profiles[settings.m_profileIndex].m_lowCutoff;
if (band < 0)
{
band = -band;
m_spectrumProbe.setUSB(false);
usb = false;
}
else
{
m_spectrumProbe.setUSB(true);
usb = true;
}
m_Bandwidth = band;
if (high < low)
{
if (settings.m_dsb)
{
fLow = high;
fHigh = -high;
m_spectrumProbe.setDSB(true);
dsb = true;
}
else
{
fLow = high;
fHigh = low;
m_spectrumProbe.setDSB(false);
dsb = false;
}
}
else
{
if (settings.m_dsb)
{
fLow = -high;
fHigh = high;
m_spectrumProbe.setDSB(true);
dsb = true;
}
else
{
fLow = low;
fHigh = high;
m_spectrumProbe.setDSB(false);
dsb = false;
}
}
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate;
m_rxa->setPassband(fLow, fHigh);
m_rxa->nbpSetWindow(m_settings.m_profiles[m_settings.m_profileIndex].m_fftWindow);
if (settings.m_demod == WDSPRxProfile::DemodSSB)
{
if (dsb) {
m_rxa->setMode(WDSP::RXA::RXA_DSB);
} else {
m_rxa->setMode(usb ? WDSP::RXA::RXA_USB : WDSP::RXA::RXA_LSB);
}
}
else if (settings.m_demod == WDSPRxProfile::DemodAM)
{
m_rxa->setMode(WDSP::RXA::RXA_AM);
}
else if (settings.m_demod == WDSPRxProfile::DemodSAM)
{
m_rxa->setMode(WDSP::RXA::RXA_SAM);
if (dsb) {
m_rxa->amd->setSBMode(0);
} else {
m_rxa->amd->setSBMode(usb ? 2 : 1);
}
}
else if (settings.m_demod == WDSPRxProfile::DemodFMN)
{
m_rxa->setMode(WDSP::RXA::RXA_FM);
}
}
if ((m_settings.m_profiles[settings.m_profileIndex].m_spanLog2 != settings.m_profiles[settings.m_profileIndex].m_spanLog2) || force) {
m_spectrumProbe.setSpanLog2(settings.m_profiles[settings.m_profileIndex].m_spanLog2);
}
// Noise Reduction
if ((m_settings.m_dnr != settings.m_dnr)
|| (m_settings.m_nrScheme != settings.m_nrScheme) || force)
{
m_rxa->setANRRun(0);
m_rxa->setEMNRRun(0);
if (settings.m_dnr)
{
switch (settings.m_nrScheme)
{
case WDSPRxProfile::NRSchemeNR:
m_rxa->setANRRun(1);
break;
case WDSPRxProfile::NRSchemeNR2:
m_rxa->setEMNRRun(1);
break;
default:
break;
}
}
}
if ((m_settings.m_nrPosition != settings.m_nrPosition) || force)
{
switch (settings.m_nrPosition)
{
case WDSPRxProfile::NRPositionPreAGC:
m_rxa->setANRPosition(0);
m_rxa->setEMNRPosition(0);
break;
case WDSPRxProfile::NRPositionPostAGC:
m_rxa->setANRPosition(1);
m_rxa->setEMNRPosition(1);
break;
default:
break;
}
}
if ((m_settings.m_nr2Gain != settings.m_nr2Gain) || force)
{
switch (settings.m_nr2Gain)
{
case WDSPRxProfile::NR2GainLinear:
m_rxa->emnr->setGainMethod(0);
break;
case WDSPRxProfile::NR2GainLog:
m_rxa->emnr->setGainMethod(1);
break;
case WDSPRxProfile::NR2GainGamma:
m_rxa->emnr->setGainMethod(2);
break;
default:
break;
}
}
if ((m_settings.m_nr2NPE != settings.m_nr2NPE) || force)
{
switch (settings.m_nr2NPE)
{
case WDSPRxProfile::NR2NPEOSMS:
m_rxa->emnr->setNpeMethod(0);
break;
case WDSPRxProfile::NR2NPEMMSE:
m_rxa->emnr->setNpeMethod(1);
break;
default:
break;
}
}
if ((m_settings.m_nr2ArtifactReduction != settings.m_nr2ArtifactReduction) || force) {
m_rxa->emnr->setAeRun(settings.m_nr2ArtifactReduction ? 1 : 0);
}
if ((m_settings.m_anf != settings.m_anf) || force) {
m_rxa->setANFRun(settings.m_anf ? 1 : 0);
}
// Caution: Causes corruption
if ((m_settings.m_snb != settings.m_snb) || force) {
m_rxa->setSNBARun(settings.m_snb ? 1 : 0);
}
// CW Peaking
if ((m_settings.m_cwPeaking != settings.m_cwPeaking) || force) {
m_rxa->speak->setRun(settings.m_cwPeaking ? 1 : 0);
}
if ((m_settings.m_cwPeakFrequency != settings.m_cwPeakFrequency) || force) {
m_rxa->speak->setFreq(settings.m_cwPeakFrequency);
}
if ((m_settings.m_cwBandwidth != settings.m_cwBandwidth) || force) {
m_rxa->speak->setBandwidth(settings.m_cwBandwidth);
}
if ((m_settings.m_cwGain != settings.m_cwGain) || force) {
m_rxa->speak->setGain(settings.m_cwGain);
}
// Noise Blanker
if ((m_settings.m_dnb != settings.m_dnb)
|| (m_settings.m_nbScheme != settings.m_nbScheme) || force)
{
m_rxa->anb->setRun(0);
m_rxa->nob->setRun(0);
if (settings.m_dnb)
{
switch(settings.m_nbScheme)
{
case WDSPRxProfile::NBSchemeNB:
m_rxa->anb->setRun(1);
break;
case WDSPRxProfile::NBSchemeNB2:
m_rxa->nob->setRun(1);
break;
default:
break;
}
}
}
if ((m_settings.m_nbSlewTime != settings.m_nbSlewTime) || force)
{
m_rxa->anb->setTau(settings.m_nbSlewTime * 0.001);
m_rxa->nob->setTau(settings.m_nbSlewTime * 0.001);
}
if ((m_settings.m_nbLeadTime != settings.m_nbLeadTime) || force)
{
m_rxa->anb->setAdvtime(settings.m_nbLeadTime * 0.001);
m_rxa->nob->setAdvtime(settings.m_nbLeadTime * 0.001);
}
if ((m_settings.m_nbLagTime != settings.m_nbLagTime) || force)
{
m_rxa->anb->setHangtime(settings.m_nbLagTime * 0.001);
m_rxa->nob->setHangtime(settings.m_nbLagTime * 0.001);
}
if ((m_settings.m_nbThreshold != settings.m_nbThreshold) || force)
{
m_rxa->anb->setThreshold(settings.m_nbThreshold);
m_rxa->nob->setThreshold(settings.m_nbThreshold);
}
if ((m_settings.m_nbAvgTime != settings.m_nbAvgTime) || force)
{
m_rxa->anb->setBacktau(settings.m_nbAvgTime * 0.001);
m_rxa->nob->setBacktau(settings.m_nbAvgTime * 0.001);
}
// AM option
if ((m_settings.m_amFadeLevel != settings.m_amFadeLevel) || force) {
m_rxa->amd->setFadeLevel(settings.m_amFadeLevel);
}
// FM options
if ((m_settings.m_fmDeviation != settings.m_fmDeviation) || force) {
m_rxa->fmd->setDeviation(settings.m_fmDeviation);
}
if ((m_settings.m_fmAFLow != settings.m_fmAFLow)
|| (m_settings.m_fmAFHigh != settings.m_fmAFHigh) || force)
{
m_rxa->fmd->setAFFilter(settings.m_fmAFLow, settings.m_fmAFHigh);
}
if ((m_settings.m_fmAFLimiter != settings.m_fmAFLimiter) || force) {
m_rxa->fmd->setLimRun(settings.m_fmAFLimiter ? 1 : 0);
}
if ((m_settings.m_fmAFLimiterGain != settings.m_fmAFLimiterGain) || force) {
m_rxa->fmd->setLimGain(settings.m_fmAFLimiterGain);
}
if ((m_settings.m_fmCTCSSNotch != settings.m_fmCTCSSNotch) || force) {
m_rxa->fmd->setCTCSSRun(settings.m_fmCTCSSNotch ? 1 : 0);
}
if ((m_settings.m_fmCTCSSNotchFrequency != settings.m_fmCTCSSNotchFrequency) || force) {
m_rxa->fmd->setCTCSSFreq(settings.m_fmCTCSSNotchFrequency);
}
// Squelch
if ((m_settings.m_squelch != settings.m_squelch)
|| (m_settings.m_squelchThreshold != settings.m_squelchThreshold)
|| (m_settings.m_squelchMode != settings.m_squelchMode) || force)
{
m_rxa->ssql->setRun(0);
m_rxa->amsq->setRun(0);
m_rxa->fmsq->setRun(0);
if (settings.m_squelch)
{
switch(settings.m_squelchMode)
{
case WDSPRxProfile::SquelchModeVoice:
{
m_rxa->ssql->setRun(1);
double threshold = 0.0075 * settings.m_squelchThreshold;
m_rxa->ssql->setThreshold(threshold);
}
break;
case WDSPRxProfile::SquelchModeAM:
{
m_rxa->amsq->setRun(1);
double threshold = ((settings.m_squelchThreshold / 100.0) * 160.0) - 160.0;
m_rxa->amsq->setThreshold(threshold);
}
break;
case WDSPRxProfile::SquelchModeFM:
{
m_rxa->fmsq->setRun(1);
double threshold = pow(10.0, -2.0 * ((double) settings.m_squelchThreshold) / 100.0);
qDebug("WDSPRxSink::applySettings: FM squelch %lf", threshold);
m_rxa->fmsq->setThreshold(threshold);
}
break;
default:
break;
}
}
}
if ((m_settings.m_ssqlTauMute != settings.m_ssqlTauMute) || force) {
m_rxa->ssql->setTauMute(settings.m_ssqlTauMute);
}
if ((m_settings.m_ssqlTauUnmute != settings.m_ssqlTauUnmute) || force) {
m_rxa->ssql->setTauUnMute(settings.m_ssqlTauUnmute);
}
if ((m_settings.m_amsqMaxTail != settings.m_amsqMaxTail) || force) {
m_rxa->amsq->setMaxTail(settings.m_amsqMaxTail);
}
// Equalizer
if ((m_settings.m_equalizer != settings.m_equalizer) || force) {
m_rxa->eqp->setRun(settings.m_equalizer ? 1 : 0);
}
if ((m_settings.m_eqF != settings.m_eqF)
|| (m_settings.m_eqG != settings.m_eqG) || force)
{
m_rxa->eqp->setProfile(10, settings.m_eqF.data(), settings.m_eqG.data());
}
// Audio panel
if ((m_settings.m_volume != settings.m_volume) || force) {
m_rxa->panel->setGain1(settings.m_volume);
}
if ((m_settings.m_audioBinaural != settings.m_audioBinaural)
|| (m_settings.m_audioPan != settings.m_audioPan)
|| (m_settings.m_audioFlipChannels != settings.m_audioFlipChannels) || force)
{
if (settings.m_audioBinaural)
{
m_rxa->panel->setCopy(settings.m_audioFlipChannels ? 3 : 0);
m_rxa->panel->setPan(settings.m_audioPan);
}
else
{
m_rxa->panel->setCopy(settings.m_audioFlipChannels ? 2 : 1);
m_rxa->panel->setPan(0.5);
}
}
// AGC
if ((m_settings.m_agc != settings.m_agc)
|| (m_settings.m_agcMode != settings.m_agcMode)
|| (m_settings.m_agcSlope != settings.m_agcSlope)
|| (m_settings.m_agcHangThreshold != settings.m_agcHangThreshold)
|| (m_settings.m_agcGain != settings.m_agcGain) || force)
{
m_rxa->agc->setSlope(settings.m_agcSlope);
m_rxa->agc->setTop((float) settings.m_agcGain);
if (settings.m_agc)
{
switch (settings.m_agcMode)
{
case WDSPRxProfile::WDSPRxAGCMode::AGCLong:
m_rxa->agc->setMode(1);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(2000);
m_rxa->agc->setDecay(2000);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCSlow:
m_rxa->agc->setMode(2);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(1000);
m_rxa->agc->setDecay(500);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCMedium:
m_rxa->agc->setMode(3);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(0);
m_rxa->agc->setDecay(250);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCFast:
m_rxa->agc->setMode(4);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(0);
m_rxa->agc->setDecay(50);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
}
}
else
{
m_rxa->agc->setMode(0);
}
}
m_settings = settings;
}