sdrangel/plugins/channeltx/modssb/ssbmod.cpp

1087 lines
36 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "ssbmod.h"
#include <QTime>
#include <QDebug>
#include <QMutexLocker>
#include <stdio.h>
#include <complex.h>
#include "SWGChannelSettings.h"
#include "SWGChannelReport.h"
#include "SWGSSBModReport.h"
#include "dsp/upchannelizer.h"
#include "dsp/dspengine.h"
#include "dsp/threadedbasebandsamplesource.h"
#include "dsp/dspcommands.h"
#include "device/devicesinkapi.h"
#include "util/db.h"
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureSSBMod, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceName, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceSeek, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceStreamTiming, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgReportFileSourceStreamData, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgReportFileSourceStreamTiming, Message)
const QString SSBMod::m_channelIdURI = "sdrangel.channeltx.modssb";
const QString SSBMod::m_channelId = "SSBMod";
const int SSBMod::m_levelNbSamples = 480; // every 10ms
const int SSBMod::m_ssbFftLen = 1024;
SSBMod::SSBMod(DeviceSinkAPI *deviceAPI) :
ChannelSourceAPI(m_channelIdURI),
m_deviceAPI(deviceAPI),
m_basebandSampleRate(48000),
m_outputSampleRate(48000),
m_inputFrequencyOffset(0),
m_SSBFilter(0),
m_DSBFilter(0),
m_SSBFilterBuffer(0),
m_DSBFilterBuffer(0),
m_SSBFilterBufferIndex(0),
m_DSBFilterBufferIndex(0),
m_sampleSink(0),
m_audioFifo(4800),
m_settingsMutex(QMutex::Recursive),
m_fileSize(0),
m_recordLength(0),
m_sampleRate(48000),
m_levelCalcCount(0),
m_peakLevel(0.0f),
m_levelSum(0.0f),
m_inAGC(9600, 0.2, 1e-4),
m_agcStepLength(2400)
{
setObjectName(m_channelId);
DSPEngine::instance()->getAudioDeviceManager()->addAudioSource(&m_audioFifo, getInputMessageQueue());
m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getInputSampleRate();
m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_audioSampleRate, m_settings.m_bandwidth / m_audioSampleRate, m_ssbFftLen);
m_DSBFilter = new fftfilt((2.0f * m_settings.m_bandwidth) / m_audioSampleRate, 2 * m_ssbFftLen);
m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
m_DSBFilterBuffer = new Complex[m_ssbFftLen];
memset(m_SSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen>>1));
memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen));
m_audioBuffer.resize(1<<14);
m_audioBufferFill = 0;
m_sum.real(0.0f);
m_sum.imag(0.0f);
m_undersampleCount = 0;
m_sumCount = 0;
m_magsq = 0.0;
m_toneNco.setFreq(1000.0, m_audioSampleRate);
// CW keyer
m_cwKeyer.setSampleRate(48000);
m_cwKeyer.setWPM(13);
m_cwKeyer.setMode(CWKeyerSettings::CWNone);
m_inAGC.setGate(m_settings.m_agcThresholdGate);
m_inAGC.setStepDownDelay(m_settings.m_agcThresholdDelay);
m_inAGC.setClamping(true);
applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true);
applySettings(m_settings, true);
m_channelizer = new UpChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSource(m_channelizer, this);
m_deviceAPI->addThreadedSource(m_threadedChannelizer);
m_deviceAPI->addChannelAPI(this);
}
SSBMod::~SSBMod()
{
DSPEngine::instance()->getAudioDeviceManager()->removeAudioSource(&m_audioFifo);
m_deviceAPI->removeChannelAPI(this);
m_deviceAPI->removeThreadedSource(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
delete m_SSBFilter;
delete m_DSBFilter;
delete[] m_SSBFilterBuffer;
delete[] m_DSBFilterBuffer;
}
void SSBMod::pull(Sample& sample)
{
Complex ci;
m_settingsMutex.lock();
if (m_interpolatorDistance > 1.0f) // decimate
{
modulateSample();
while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
else
{
if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
ci *= 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
m_settingsMutex.unlock();
double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
sample.m_real = (FixReal) ci.real();
sample.m_imag = (FixReal) ci.imag();
}
void SSBMod::pullAudio(int nbSamples)
{
unsigned int nbSamplesAudio = nbSamples * ((Real) m_audioSampleRate / (Real) m_basebandSampleRate);
if (nbSamplesAudio > m_audioBuffer.size())
{
m_audioBuffer.resize(nbSamplesAudio);
}
m_audioFifo.read(reinterpret_cast<quint8*>(&m_audioBuffer[0]), nbSamplesAudio, 10);
m_audioBufferFill = 0;
}
void SSBMod::modulateSample()
{
pullAF(m_modSample);
calculateLevel(m_modSample);
m_audioBufferFill++;
}
void SSBMod::pullAF(Complex& sample)
{
if (m_settings.m_audioMute)
{
sample.real(0.0f);
sample.imag(0.0f);
return;
}
Complex ci;
fftfilt::cmplx *filtered;
int n_out = 0;
int decim = 1<<(m_settings.m_spanLog2 - 1);
unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
switch (m_settings.m_modAFInput)
{
case SSBModSettings::SSBModInputTone:
if (m_settings.m_dsb)
{
Real t = m_toneNco.next()/1.25;
sample.real(t);
sample.imag(t);
}
else
{
if (m_settings.m_usb) {
sample = m_toneNco.nextIQ();
} else {
sample = m_toneNco.nextQI();
}
}
break;
case SSBModSettings::SSBModInputFile:
// Monaural (mono):
// sox f4exb_call.wav --encoding float --endian little f4exb_call.raw
// ffplay -f f32le -ar 48k -ac 1 f4exb_call.raw
// Binaural (stereo):
// sox f4exb_call.wav --encoding float --endian little f4exb_call.raw
// ffplay -f f32le -ar 48k -ac 2 f4exb_call.raw
if (m_ifstream.is_open())
{
if (m_ifstream.eof())
{
if (m_settings.m_playLoop)
{
m_ifstream.clear();
m_ifstream.seekg(0, std::ios::beg);
}
}
if (m_ifstream.eof())
{
ci.real(0.0f);
ci.imag(0.0f);
}
else
{
if (m_settings.m_audioBinaural)
{
Complex c;
m_ifstream.read(reinterpret_cast<char*>(&c), sizeof(Complex));
if (m_settings.m_audioFlipChannels)
{
ci.real(c.imag() * m_settings.m_volumeFactor);
ci.imag(c.real() * m_settings.m_volumeFactor);
}
else
{
ci = c * m_settings.m_volumeFactor;
}
}
else
{
Real real;
m_ifstream.read(reinterpret_cast<char*>(&real), sizeof(Real));
if (m_settings.m_agc)
{
ci.real(real);
ci.imag(0.0f);
m_inAGC.feed(ci);
ci *= m_settings.m_volumeFactor;
}
else
{
ci.real(real * m_settings.m_volumeFactor);
ci.imag(0.0f);
}
}
}
}
else
{
ci.real(0.0f);
ci.imag(0.0f);
}
break;
case SSBModSettings::SSBModInputAudio:
if (m_settings.m_audioBinaural)
{
if (m_settings.m_audioFlipChannels)
{
ci.real((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
ci.imag((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
}
else
{
ci.real((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
ci.imag((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
}
}
else
{
if (m_settings.m_agc)
{
ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f));
ci.imag(0.0f);
m_inAGC.feed(ci);
ci *= m_settings.m_volumeFactor;
}
else
{
ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f) * m_settings.m_volumeFactor);
ci.imag(0.0f);
}
}
break;
case SSBModSettings::SSBModInputCWTone:
Real fadeFactor;
if (m_cwKeyer.getSample())
{
m_cwKeyer.getCWSmoother().getFadeSample(true, fadeFactor);
if (m_settings.m_dsb)
{
Real t = m_toneNco.next() * fadeFactor;
sample.real(t);
sample.imag(t);
}
else
{
if (m_settings.m_usb) {
sample = m_toneNco.nextIQ() * fadeFactor;
} else {
sample = m_toneNco.nextQI() * fadeFactor;
}
}
}
else
{
if (m_cwKeyer.getCWSmoother().getFadeSample(false, fadeFactor))
{
if (m_settings.m_dsb)
{
Real t = (m_toneNco.next() * fadeFactor)/1.25;
sample.real(t);
sample.imag(t);
}
else
{
if (m_settings.m_usb) {
sample = m_toneNco.nextIQ() * fadeFactor;
} else {
sample = m_toneNco.nextQI() * fadeFactor;
}
}
}
else
{
sample.real(0.0f);
sample.imag(0.0f);
m_toneNco.setPhase(0);
}
}
break;
case SSBModSettings::SSBModInputNone:
default:
sample.real(0.0f);
sample.imag(0.0f);
break;
}
if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputFile)
|| (m_settings.m_modAFInput == SSBModSettings::SSBModInputAudio)) // real audio
{
if (m_settings.m_dsb)
{
n_out = m_DSBFilter->runDSB(ci, &filtered);
if (n_out > 0)
{
memcpy((void *) m_DSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
m_DSBFilterBufferIndex = 0;
}
sample = m_DSBFilterBuffer[m_DSBFilterBufferIndex];
m_DSBFilterBufferIndex++;
}
else
{
n_out = m_SSBFilter->runSSB(ci, &filtered, m_settings.m_usb);
if (n_out > 0)
{
memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
m_SSBFilterBufferIndex = 0;
}
sample = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
m_SSBFilterBufferIndex++;
}
if (n_out > 0)
{
for (int i = 0; i < n_out; i++)
{
// Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display
// smart decimation with bit gain using float arithmetic (23 bits significand)
m_sum += filtered[i];
if (!(m_undersampleCount++ & decim_mask))
{
Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF;
if (!m_settings.m_dsb & !m_settings.m_usb)
{ // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(avgi, avgr));
}
else
{
m_sampleBuffer.push_back(Sample(avgr, avgi));
}
m_sum.real(0.0);
m_sum.imag(0.0);
}
}
}
} // Real audio
else if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputTone)
|| (m_settings.m_modAFInput == SSBModSettings::SSBModInputCWTone)) // tone
{
m_sum += sample;
if (!(m_undersampleCount++ & decim_mask))
{
Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF;
if (!m_settings.m_dsb & !m_settings.m_usb)
{ // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(avgi, avgr));
}
else
{
m_sampleBuffer.push_back(Sample(avgr, avgi));
}
m_sum.real(0.0);
m_sum.imag(0.0);
}
if (m_sumCount < (m_settings.m_dsb ? m_ssbFftLen : m_ssbFftLen>>1))
{
n_out = 0;
m_sumCount++;
}
else
{
n_out = m_sumCount;
m_sumCount = 0;
}
}
if (n_out > 0)
{
if (m_sampleSink != 0)
{
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb);
}
m_sampleBuffer.clear();
}
}
void SSBMod::calculateLevel(Complex& sample)
{
Real t = sample.real(); // TODO: possibly adjust depending on sample type
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), t);
m_levelSum += t * t;
m_levelCalcCount++;
}
else
{
qreal rmsLevel = sqrt(m_levelSum / m_levelNbSamples);
//qDebug("NFMMod::calculateLevel: %f %f", rmsLevel, m_peakLevel);
emit levelChanged(rmsLevel, m_peakLevel, m_levelNbSamples);
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void SSBMod::start()
{
qDebug() << "SSBMod::start: m_outputSampleRate: " << m_outputSampleRate
<< " m_inputFrequencyOffset: " << m_settings.m_inputFrequencyOffset;
m_audioFifo.clear();
applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true);
}
void SSBMod::stop()
{
}
bool SSBMod::handleMessage(const Message& cmd)
{
if (UpChannelizer::MsgChannelizerNotification::match(cmd))
{
UpChannelizer::MsgChannelizerNotification& notif = (UpChannelizer::MsgChannelizerNotification&) cmd;
qDebug() << "SSBMod::handleMessage: MsgChannelizerNotification";
applyChannelSettings(notif.getBasebandSampleRate(), notif.getSampleRate(), notif.getFrequencyOffset());
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
qDebug() << "SSBMod::handleMessage: MsgConfigureChannelizer: sampleRate: " << cfg.getSampleRate()
<< " centerFrequency: " << cfg.getCenterFrequency();
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
else if (MsgConfigureSSBMod::match(cmd))
{
MsgConfigureSSBMod& cfg = (MsgConfigureSSBMod&) cmd;
qDebug() << "SSBMod::handleMessage: MsgConfigureSSBMod";
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (MsgConfigureFileSourceName::match(cmd))
{
MsgConfigureFileSourceName& conf = (MsgConfigureFileSourceName&) cmd;
m_fileName = conf.getFileName();
openFileStream();
return true;
}
else if (MsgConfigureFileSourceSeek::match(cmd))
{
MsgConfigureFileSourceSeek& conf = (MsgConfigureFileSourceSeek&) cmd;
int seekPercentage = conf.getPercentage();
seekFileStream(seekPercentage);
return true;
}
else if (MsgConfigureFileSourceStreamTiming::match(cmd))
{
std::size_t samplesCount;
if (m_ifstream.eof()) {
samplesCount = m_fileSize / sizeof(Real);
} else {
samplesCount = m_ifstream.tellg() / sizeof(Real);
}
if (getMessageQueueToGUI())
{
MsgReportFileSourceStreamTiming *report;
report = MsgReportFileSourceStreamTiming::create(samplesCount);
getMessageQueueToGUI()->push(report);
}
return true;
}
else if (DSPConfigureAudio::match(cmd))
{
DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd;
uint32_t sampleRate = cfg.getSampleRate();
qDebug() << "SSBMod::handleMessage: DSPConfigureAudio:"
<< " sampleRate: " << sampleRate;
if (sampleRate != m_audioSampleRate) {
applyAudioSampleRate(sampleRate);
}
return true;
}
else if (DSPSignalNotification::match(cmd))
{
return true;
}
else
{
return false;
}
}
void SSBMod::openFileStream()
{
if (m_ifstream.is_open()) {
m_ifstream.close();
}
m_ifstream.open(m_fileName.toStdString().c_str(), std::ios::binary | std::ios::ate);
m_fileSize = m_ifstream.tellg();
m_ifstream.seekg(0,std::ios_base::beg);
m_sampleRate = 48000; // fixed rate
m_recordLength = m_fileSize / (sizeof(Real) * m_sampleRate);
qDebug() << "SSBMod::openFileStream: " << m_fileName.toStdString().c_str()
<< " fileSize: " << m_fileSize << "bytes"
<< " length: " << m_recordLength << " seconds";
if (getMessageQueueToGUI())
{
MsgReportFileSourceStreamData *report;
report = MsgReportFileSourceStreamData::create(m_sampleRate, m_recordLength);
getMessageQueueToGUI()->push(report);
}
}
void SSBMod::seekFileStream(int seekPercentage)
{
QMutexLocker mutexLocker(&m_settingsMutex);
if (m_ifstream.is_open())
{
int seekPoint = ((m_recordLength * seekPercentage) / 100) * m_sampleRate;
seekPoint *= sizeof(Real);
m_ifstream.clear();
m_ifstream.seekg(seekPoint, std::ios::beg);
}
}
void SSBMod::applyAudioSampleRate(int sampleRate)
{
qDebug("SSBMod::applyAudioSampleRate: %d", sampleRate);
MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create(
sampleRate, m_settings.m_inputFrequencyOffset);
m_inputMessageQueue.push(channelConfigMsg);
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) sampleRate / (Real) m_outputSampleRate;
m_interpolator.create(48, sampleRate, m_settings.m_bandwidth, 3.0);
float band = m_settings.m_bandwidth;
float lowCutoff = m_settings.m_lowCutoff;
bool usb = m_settings.m_usb;
if (band < 0) // negative means LSB
{
band = -band; // turn to positive
lowCutoff = -lowCutoff;
usb = false; // and take note of side band
}
else
{
usb = true;
}
if (band < 100.0f) // at least 100 Hz
{
band = 100.0f;
lowCutoff = 0;
}
if (band - lowCutoff < 100.0f) {
lowCutoff = band - 100.0f;
}
m_SSBFilter->create_filter(lowCutoff / sampleRate, band / sampleRate);
m_DSBFilter->create_dsb_filter((2.0f * band) / sampleRate);
m_settings.m_bandwidth = band;
m_settings.m_lowCutoff = lowCutoff;
m_settings.m_usb = usb;
m_toneNco.setFreq(m_settings.m_toneFrequency, sampleRate);
m_cwKeyer.setSampleRate(sampleRate);
m_agcStepLength = std::min(sampleRate/20, m_settings.m_agcTime/2); // 50 ms or half the AGC length whichever is smaller
m_settingsMutex.unlock();
m_audioSampleRate = sampleRate;
if (getMessageQueueToGUI())
{
DSPConfigureAudio *cfg = new DSPConfigureAudio(m_audioSampleRate);
getMessageQueueToGUI()->push(cfg);
}
}
void SSBMod::applyChannelSettings(int basebandSampleRate, int outputSampleRate, int inputFrequencyOffset, bool force)
{
qDebug() << "SSBMod::applyChannelSettings:"
<< " basebandSampleRate: " << basebandSampleRate
<< " outputSampleRate: " << outputSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
if ((inputFrequencyOffset != m_inputFrequencyOffset) ||
(outputSampleRate != m_outputSampleRate) || force)
{
m_settingsMutex.lock();
m_carrierNco.setFreq(inputFrequencyOffset, outputSampleRate);
m_settingsMutex.unlock();
}
if ((outputSampleRate != m_outputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_audioSampleRate / (Real) outputSampleRate;
m_interpolator.create(48, m_audioSampleRate, m_settings.m_bandwidth, 3.0);
m_settingsMutex.unlock();
}
m_basebandSampleRate = basebandSampleRate;
m_outputSampleRate = outputSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
}
void SSBMod::applySettings(const SSBModSettings& settings, bool force)
{
float band = settings.m_bandwidth;
float lowCutoff = settings.m_lowCutoff;
bool usb = settings.m_usb;
if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff) || force)
{
if (band < 0) // negative means LSB
{
band = -band; // turn to positive
lowCutoff = -lowCutoff;
usb = false; // and take note of side band
}
else
{
usb = true;
}
if (band < 100.0f) // at least 100 Hz
{
band = 100.0f;
lowCutoff = 0;
}
if (band - lowCutoff < 100.0f) {
lowCutoff = band - 100.0f;
}
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_audioSampleRate / (Real) m_outputSampleRate;
m_interpolator.create(48, m_audioSampleRate, band, 3.0);
m_SSBFilter->create_filter(lowCutoff / m_audioSampleRate, band / m_audioSampleRate);
m_DSBFilter->create_dsb_filter((2.0f * band) / m_audioSampleRate);
m_settingsMutex.unlock();
}
if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force)
{
m_settingsMutex.lock();
m_toneNco.setFreq(settings.m_toneFrequency, m_audioSampleRate);
m_settingsMutex.unlock();
}
if ((settings.m_dsb != m_settings.m_dsb) || force)
{
if (settings.m_dsb)
{
memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen));
m_DSBFilterBufferIndex = 0;
}
else
{
memset(m_SSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen>>1));
m_SSBFilterBufferIndex = 0;
}
}
if ((settings.m_agcTime != m_settings.m_agcTime) ||
(settings.m_agcOrder != m_settings.m_agcOrder) || force)
{
m_settingsMutex.lock();
m_inAGC.resize(settings.m_agcTime, m_agcStepLength, settings.m_agcOrder);
m_settingsMutex.unlock();
}
if ((settings.m_agcThresholdEnable != m_settings.m_agcThresholdEnable) || force)
{
m_inAGC.setThresholdEnable(settings.m_agcThresholdEnable);
}
if ((settings.m_agcThreshold != m_settings.m_agcThreshold) || force)
{
m_inAGC.setThreshold(settings.m_agcThreshold);
}
if ((settings.m_agcThresholdGate != m_settings.m_agcThresholdGate) || force)
{
m_inAGC.setGate(settings.m_agcThresholdGate);
}
if ((settings.m_agcThresholdDelay != m_settings.m_agcThresholdDelay) || force)
{
m_inAGC.setStepDownDelay(settings.m_agcThresholdDelay);
}
if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force)
{
AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager();
int audioDeviceIndex = audioDeviceManager->getInputDeviceIndex(settings.m_audioDeviceName);
audioDeviceManager->addAudioSource(&m_audioFifo, getInputMessageQueue(), audioDeviceIndex);
uint32_t audioSampleRate = audioDeviceManager->getInputSampleRate(audioDeviceIndex);
if (m_audioSampleRate != audioSampleRate) {
applyAudioSampleRate(audioSampleRate);
}
}
m_settings = settings;
m_settings.m_bandwidth = band;
m_settings.m_lowCutoff = lowCutoff;
m_settings.m_usb = usb;
}
QByteArray SSBMod::serialize() const
{
return m_settings.serialize();
}
bool SSBMod::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(m_settings, true);
m_inputMessageQueue.push(msg);
return true;
}
else
{
m_settings.resetToDefaults();
MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(m_settings, true);
m_inputMessageQueue.push(msg);
return false;
}
}
int SSBMod::webapiSettingsGet(
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage __attribute__((unused)))
{
response.setSsbModSettings(new SWGSDRangel::SWGSSBModSettings());
response.getSsbModSettings()->init();
webapiFormatChannelSettings(response, m_settings);
return 200;
}
int SSBMod::webapiSettingsPutPatch(
bool force,
const QStringList& channelSettingsKeys,
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage __attribute__((unused)))
{
SSBModSettings settings = m_settings;
bool frequencyOffsetChanged = false;
if (channelSettingsKeys.contains("inputFrequencyOffset"))
{
settings.m_inputFrequencyOffset = response.getSsbModSettings()->getInputFrequencyOffset();
frequencyOffsetChanged = true;
}
if (channelSettingsKeys.contains("bandwidth")) {
settings.m_bandwidth = response.getSsbModSettings()->getBandwidth();
}
if (channelSettingsKeys.contains("lowCutoff")) {
settings.m_lowCutoff = response.getSsbModSettings()->getLowCutoff();
}
if (channelSettingsKeys.contains("usb")) {
settings.m_usb = response.getSsbModSettings()->getUsb() != 0;
}
if (channelSettingsKeys.contains("toneFrequency")) {
settings.m_toneFrequency = response.getSsbModSettings()->getToneFrequency();
}
if (channelSettingsKeys.contains("volumeFactor")) {
settings.m_volumeFactor = response.getSsbModSettings()->getVolumeFactor();
}
if (channelSettingsKeys.contains("spanLog2")) {
settings.m_spanLog2 = response.getSsbModSettings()->getSpanLog2();
}
if (channelSettingsKeys.contains("audioBinaural")) {
settings.m_audioBinaural = response.getSsbModSettings()->getAudioBinaural() != 0;
}
if (channelSettingsKeys.contains("audioFlipChannels")) {
settings.m_audioFlipChannels = response.getSsbModSettings()->getAudioFlipChannels() != 0;
}
if (channelSettingsKeys.contains("dsb")) {
settings.m_dsb = response.getSsbModSettings()->getDsb() != 0;
}
if (channelSettingsKeys.contains("audioMute")) {
settings.m_audioMute = response.getSsbModSettings()->getAudioMute() != 0;
}
if (channelSettingsKeys.contains("playLoop")) {
settings.m_playLoop = response.getSsbModSettings()->getPlayLoop() != 0;
}
if (channelSettingsKeys.contains("agc")) {
settings.m_agc = response.getSsbModSettings()->getAgc() != 0;
}
if (channelSettingsKeys.contains("agcOrder")) {
settings.m_agcOrder = response.getSsbModSettings()->getAgcOrder();
}
if (channelSettingsKeys.contains("agcTime")) {
settings.m_agcTime = response.getSsbModSettings()->getAgcTime();
}
if (channelSettingsKeys.contains("agcThresholdEnable")) {
settings.m_agcThresholdEnable = response.getSsbModSettings()->getAgcThresholdEnable() != 0;
}
if (channelSettingsKeys.contains("agcThreshold")) {
settings.m_agcThreshold = response.getSsbModSettings()->getAgcThreshold();
}
if (channelSettingsKeys.contains("agcThresholdGate")) {
settings.m_agcThresholdGate = response.getSsbModSettings()->getAgcThresholdGate();
}
if (channelSettingsKeys.contains("agcThresholdDelay")) {
settings.m_agcThresholdDelay = response.getSsbModSettings()->getAgcThresholdDelay();
}
if (channelSettingsKeys.contains("rgbColor")) {
settings.m_rgbColor = response.getSsbModSettings()->getRgbColor();
}
if (channelSettingsKeys.contains("title")) {
settings.m_title = *response.getSsbModSettings()->getTitle();
}
if (channelSettingsKeys.contains("modAFInput")) {
settings.m_modAFInput = (SSBModSettings::SSBModInputAF) response.getSsbModSettings()->getModAfInput();
}
if (channelSettingsKeys.contains("audioDeviceName")) {
settings.m_audioDeviceName = *response.getSsbModSettings()->getAudioDeviceName();
}
if (channelSettingsKeys.contains("cwKeyer"))
{
SWGSDRangel::SWGCWKeyerSettings *apiCwKeyerSettings = response.getSsbModSettings()->getCwKeyer();
CWKeyerSettings cwKeyerSettings = m_cwKeyer.getSettings();
if (channelSettingsKeys.contains("cwKeyer.loop")) {
cwKeyerSettings.m_loop = apiCwKeyerSettings->getLoop() != 0;
}
if (channelSettingsKeys.contains("cwKeyer.mode")) {
cwKeyerSettings.m_mode = (CWKeyerSettings::CWMode) apiCwKeyerSettings->getMode();
}
if (channelSettingsKeys.contains("cwKeyer.text")) {
cwKeyerSettings.m_text = *apiCwKeyerSettings->getText();
}
if (channelSettingsKeys.contains("cwKeyer.sampleRate")) {
cwKeyerSettings.m_sampleRate = apiCwKeyerSettings->getSampleRate();
}
if (channelSettingsKeys.contains("cwKeyer.wpm")) {
cwKeyerSettings.m_wpm = apiCwKeyerSettings->getWpm();
}
m_cwKeyer.setLoop(cwKeyerSettings.m_loop);
m_cwKeyer.setMode(cwKeyerSettings.m_mode);
m_cwKeyer.setSampleRate(cwKeyerSettings.m_sampleRate);
m_cwKeyer.setText(cwKeyerSettings.m_text);
m_cwKeyer.setWPM(cwKeyerSettings.m_wpm);
if (m_guiMessageQueue) // forward to GUI if any
{
CWKeyer::MsgConfigureCWKeyer *msgCwKeyer = CWKeyer::MsgConfigureCWKeyer::create(cwKeyerSettings, force);
m_guiMessageQueue->push(msgCwKeyer);
}
}
if (frequencyOffsetChanged)
{
SSBMod::MsgConfigureChannelizer *msgChan = SSBMod::MsgConfigureChannelizer::create(
m_audioSampleRate, settings.m_inputFrequencyOffset);
m_inputMessageQueue.push(msgChan);
}
MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(settings, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureSSBMod *msgToGUI = MsgConfigureSSBMod::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatChannelSettings(response, settings);
return 200;
}
int SSBMod::webapiReportGet(
SWGSDRangel::SWGChannelReport& response,
QString& errorMessage __attribute__((unused)))
{
response.setSsbModReport(new SWGSDRangel::SWGSSBModReport());
response.getSsbModReport()->init();
webapiFormatChannelReport(response);
return 200;
}
void SSBMod::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const SSBModSettings& settings)
{
response.getSsbModSettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset);
response.getSsbModSettings()->setBandwidth(settings.m_bandwidth);
response.getSsbModSettings()->setLowCutoff(settings.m_lowCutoff);
response.getSsbModSettings()->setUsb(settings.m_usb ? 1 : 0);
response.getSsbModSettings()->setToneFrequency(settings.m_toneFrequency);
response.getSsbModSettings()->setVolumeFactor(settings.m_volumeFactor);
response.getSsbModSettings()->setSpanLog2(settings.m_spanLog2);
response.getSsbModSettings()->setAudioBinaural(settings.m_audioBinaural ? 1 : 0);
response.getSsbModSettings()->setAudioFlipChannels(settings.m_audioFlipChannels ? 1 : 0);
response.getSsbModSettings()->setDsb(settings.m_dsb ? 1 : 0);
response.getSsbModSettings()->setAudioMute(settings.m_audioMute ? 1 : 0);
response.getSsbModSettings()->setPlayLoop(settings.m_playLoop ? 1 : 0);
response.getSsbModSettings()->setAgc(settings.m_agc ? 1 : 0);
response.getSsbModSettings()->setAgcOrder(settings.m_agcOrder);
response.getSsbModSettings()->setAgcTime(settings.m_agcTime);
response.getSsbModSettings()->setAgcThresholdEnable(settings.m_agcThresholdEnable ? 1 : 0);
response.getSsbModSettings()->setAgcThreshold(settings.m_agcThreshold);
response.getSsbModSettings()->setAgcThresholdGate(settings.m_agcThresholdGate);
response.getSsbModSettings()->setAgcThresholdDelay(settings.m_agcThresholdDelay);
response.getSsbModSettings()->setRgbColor(settings.m_rgbColor);
if (response.getSsbModSettings()->getTitle()) {
*response.getSsbModSettings()->getTitle() = settings.m_title;
} else {
response.getSsbModSettings()->setTitle(new QString(settings.m_title));
}
response.getSsbModSettings()->setModAfInput((int) settings.m_modAFInput);
if (response.getSsbModSettings()->getAudioDeviceName()) {
*response.getSsbModSettings()->getAudioDeviceName() = settings.m_audioDeviceName;
} else {
response.getSsbModSettings()->setAudioDeviceName(new QString(settings.m_audioDeviceName));
}
if (!response.getSsbModSettings()->getCwKeyer()) {
response.getSsbModSettings()->setCwKeyer(new SWGSDRangel::SWGCWKeyerSettings);
}
SWGSDRangel::SWGCWKeyerSettings *apiCwKeyerSettings = response.getSsbModSettings()->getCwKeyer();
const CWKeyerSettings& cwKeyerSettings = m_cwKeyer.getSettings();
apiCwKeyerSettings->setLoop(cwKeyerSettings.m_loop ? 1 : 0);
apiCwKeyerSettings->setMode((int) cwKeyerSettings.m_mode);
apiCwKeyerSettings->setSampleRate(cwKeyerSettings.m_sampleRate);
if (apiCwKeyerSettings->getText()) {
*apiCwKeyerSettings->getText() = cwKeyerSettings.m_text;
} else {
apiCwKeyerSettings->setText(new QString(cwKeyerSettings.m_text));
}
apiCwKeyerSettings->setWpm(cwKeyerSettings.m_wpm);
}
void SSBMod::webapiFormatChannelReport(SWGSDRangel::SWGChannelReport& response)
{
response.getSsbModReport()->setChannelPowerDb(CalcDb::dbPower(getMagSq()));
response.getSsbModReport()->setAudioSampleRate(m_audioSampleRate);
response.getSsbModReport()->setChannelSampleRate(m_outputSampleRate);
}