1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-14 12:22:00 -05:00
sdrangel/wdsp/amsq.cpp
2024-06-16 19:14:31 +02:00

277 lines
8.0 KiB
C++

/* amsq.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include <QRecursiveMutex>
#include "comm.hpp"
#include "amsq.hpp"
#include "RXA.hpp"
#include "TXA.hpp"
namespace WDSP {
void AMSQ::compute_slews(AMSQ *a)
{
int i;
double delta, theta;
delta = PI / (double)a->ntup;
theta = 0.0;
for (i = 0; i <= a->ntup; i++)
{
a->cup[i] = a->muted_gain + (1.0 - a->muted_gain) * 0.5 * (1.0 - cos (theta));
theta += delta;
}
delta = PI / (double)a->ntdown;
theta = 0.0;
for (i = 0; i <= a->ntdown; i++)
{
a->cdown[i] = a->muted_gain + (1.0 - a->muted_gain) * 0.5 * (1.0 + cos (theta));
theta += delta;
}
}
void AMSQ::calc_amsq(AMSQ *a)
{
// signal averaging
a->trigsig = new double[a->size * 2]; // (double *)malloc0(a->size * sizeof(dcomplex));
a->avm = exp(-1.0 / (a->rate * a->avtau));
a->onem_avm = 1.0 - a->avm;
a->avsig = 0.0;
// level change
a->ntup = (int)(a->tup * a->rate);
a->ntdown = (int)(a->tdown * a->rate);
a->cup = new double[(a->ntup + 1) * 2]; // (double *)malloc0((a->ntup + 1) * sizeof(double));
a->cdown = new double[(a->ntdown + 1) * 2]; // (double *)malloc0((a->ntdown + 1) * sizeof(double));
compute_slews(a);
// control
a->state = 0;
}
void AMSQ::decalc_amsq (AMSQ *a)
{
delete[] a->cdown;
delete[] a->cup;
delete[] a->trigsig;
}
AMSQ* AMSQ::create_amsq (int run, int size, double* in, double* out, double* trigger, int rate, double avtau,
double tup, double tdown, double tail_thresh, double unmute_thresh, double min_tail, double max_tail, double muted_gain)
{
AMSQ *a = new AMSQ;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->rate = (double)rate;
a->muted_gain = muted_gain;
a->trigger = trigger;
a->avtau = avtau;
a->tup = tup;
a->tdown = tdown;
a->tail_thresh = tail_thresh;
a->unmute_thresh = unmute_thresh;
a->min_tail = min_tail;
a->max_tail = max_tail;
calc_amsq (a);
return a;
}
void AMSQ::destroy_amsq (AMSQ *a)
{
decalc_amsq (a);
delete a;
}
void AMSQ::flush_amsq (AMSQ*a)
{
memset (a->trigsig, 0, a->size * sizeof (dcomplex));
a->avsig = 0.0;
a->state = 0;
}
enum _amsqstate
{
MUTED,
INCREASE,
UNMUTED,
TAIL,
DECREASE
};
void AMSQ::xamsq (AMSQ *a)
{
if (a->run)
{
int i;
double sig, siglimit;
for (i = 0; i < a->size; i++)
{
sig = sqrt (a->trigsig[2 * i + 0] * a->trigsig[2 * i + 0] + a->trigsig[2 * i + 1] * a->trigsig[2 * i + 1]);
a->avsig = a->avm * a->avsig + a->onem_avm * sig;
switch (a->state)
{
case MUTED:
if (a->avsig > a->unmute_thresh)
{
a->state = INCREASE;
a->count = a->ntup;
}
a->out[2 * i + 0] = a->muted_gain * a->in[2 * i + 0];
a->out[2 * i + 1] = a->muted_gain * a->in[2 * i + 1];
break;
case INCREASE:
a->out[2 * i + 0] = a->in[2 * i + 0] * a->cup[a->ntup - a->count];
a->out[2 * i + 1] = a->in[2 * i + 1] * a->cup[a->ntup - a->count];
if (a->count-- == 0)
a->state = UNMUTED;
break;
case UNMUTED:
if (a->avsig < a->tail_thresh)
{
a->state = TAIL;
if ((siglimit = a->avsig) > 1.0) siglimit = 1.0;
a->count = (int)((a->min_tail + (a->max_tail - a->min_tail) * (1.0 - siglimit)) * a->rate);
}
a->out[2 * i + 0] = a->in[2 * i + 0];
a->out[2 * i + 1] = a->in[2 * i + 1];
break;
case TAIL:
a->out[2 * i + 0] = a->in[2 * i + 0];
a->out[2 * i + 1] = a->in[2 * i + 1];
if (a->avsig > a->unmute_thresh)
a->state = UNMUTED;
else if (a->count-- == 0)
{
a->state = DECREASE;
a->count = a->ntdown;
}
break;
case DECREASE:
a->out[2 * i + 0] = a->in[2 * i + 0] * a->cdown[a->ntdown - a->count];
a->out[2 * i + 1] = a->in[2 * i + 1] * a->cdown[a->ntdown - a->count];
if (a->count-- == 0)
a->state = MUTED;
break;
}
}
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void AMSQ::xamsqcap (AMSQ *a)
{
memcpy (a->trigsig, a->trigger, a->size * sizeof (dcomplex));
}
void AMSQ::setBuffers_amsq (AMSQ *a, double* in, double* out, double* trigger)
{
a->in = in;
a->out = out;
a->trigger = trigger;
}
void AMSQ::setSamplerate_amsq (AMSQ *a, int rate)
{
decalc_amsq (a);
a->rate = rate;
calc_amsq (a);
}
void AMSQ::setSize_amsq (AMSQ *a, int size)
{
decalc_amsq (a);
a->size = size;
calc_amsq (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void AMSQ::SetAMSQRun (RXA& rxa, int run)
{
rxa.csDSP.lock();
rxa.amsq.p->run = run;
rxa.csDSP.unlock();
}
void AMSQ::SetAMSQThreshold (RXA& rxa, double threshold)
{
double thresh = pow (10.0, threshold / 20.0);
rxa.csDSP.lock();
rxa.amsq.p->tail_thresh = 0.9 * thresh;
rxa.amsq.p->unmute_thresh = thresh;
rxa.csDSP.unlock();
}
void AMSQ::SetAMSQMaxTail (RXA& rxa, double tail)
{
AMSQ *a;
rxa.csDSP.lock();
a = rxa.amsq.p;
if (tail < a->min_tail) tail = a->min_tail;
a->max_tail = tail;
rxa.csDSP.unlock();
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void AMSQ::SetAMSQRun (TXA& txa, int run)
{
txa.csDSP.lock();
txa.amsq.p->run = run;
txa.csDSP.unlock();
}
void AMSQ::SetAMSQMutedGain (TXA& txa, double dBlevel)
{ // dBlevel is negative
AMSQ *a;
txa.csDSP.lock();
a = txa.amsq.p;
a->muted_gain = pow (10.0, dBlevel / 20.0);
compute_slews(a);
txa.csDSP.unlock();
}
void AMSQ::SetAMSQThreshold (TXA& txa, double threshold)
{
double thresh = pow (10.0, threshold / 20.0);
txa.csDSP.lock();
txa.amsq.p->tail_thresh = 0.9 * thresh;
txa.amsq.p->unmute_thresh = thresh;
txa.csDSP.unlock();
}
} // namespace WDSP