1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-14 12:22:00 -05:00
sdrangel/wdsp/firmin.cpp
2024-06-16 19:14:31 +02:00

491 lines
17 KiB
C++

/* firmin.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "fir.hpp"
#include "firmin.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Time-Domain FIR *
* *
********************************************************************************************************/
void FIRMIN::calc_firmin (FIRMIN *a)
{
a->h = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain);
a->rsize = a->nc;
a->mask = a->rsize - 1;
a->ring = new double[a->rsize * 2]; // (double *) malloc0 (a->rsize * sizeof (complex));
a->idx = 0;
}
FIRMIN* FIRMIN::create_firmin (int run, int position, int size, double* in, double* out,
int nc, double f_low, double f_high, int samplerate, int wintype, double gain)
{
FIRMIN *a = new FIRMIN;
a->run = run;
a->position = position;
a->size = size;
a->in = in;
a->out = out;
a->nc = nc;
a->f_low = f_low;
a->f_high = f_high;
a->samplerate = samplerate;
a->wintype = wintype;
a->gain = gain;
calc_firmin (a);
return a;
}
void FIRMIN::destroy_firmin (FIRMIN *a)
{
delete[] (a->ring);
delete[] (a->h);
delete (a);
}
void FIRMIN::flush_firmin (FIRMIN *a)
{
memset (a->ring, 0, a->rsize * sizeof (dcomplex));
a->idx = 0;
}
void FIRMIN::xfirmin (FIRMIN *a, int pos)
{
if (a->run && a->position == pos)
{
int i, j, k;
for (i = 0; i < a->size; i++)
{
a->ring[2 * a->idx + 0] = a->in[2 * i + 0];
a->ring[2 * a->idx + 1] = a->in[2 * i + 1];
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
k = a->idx;
for (j = 0; j < a->nc; j++)
{
a->out[2 * i + 0] += a->h[2 * j + 0] * a->ring[2 * k + 0] - a->h[2 * j + 1] * a->ring[2 * k + 1];
a->out[2 * i + 1] += a->h[2 * j + 0] * a->ring[2 * k + 1] + a->h[2 * j + 1] * a->ring[2 * k + 0];
k = (k + a->mask) & a->mask;
}
a->idx = (a->idx + 1) & a->mask;
}
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void FIRMIN::setBuffers_firmin (FIRMIN *a, double* in, double* out)
{
a->in = in;
a->out = out;
}
void FIRMIN::setSamplerate_firmin (FIRMIN *a, int rate)
{
a->samplerate = (double)rate;
calc_firmin (a);
}
void FIRMIN::setSize_firmin (FIRMIN *a, int size)
{
a->size = size;
}
void FIRMIN::setFreqs_firmin (FIRMIN *a, double f_low, double f_high)
{
a->f_low = f_low;
a->f_high = f_high;
calc_firmin (a);
}
/********************************************************************************************************
* *
* Standalone Partitioned Overlap-Save Bandpass *
* *
********************************************************************************************************/
void FIROPT::plan_firopt (FIROPT *a)
{
// must call for change in 'nc', 'size', 'out'
int i;
a->nfor = a->nc / a->size;
a->buffidx = 0;
a->idxmask = a->nfor - 1;
a->fftin = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->fftout = new double*[a->nfor]; // (double **) malloc0 (a->nfor * sizeof (double *));
a->fmask = new double*[a->nfor]; // (double **) malloc0 (a->nfor * sizeof (double *));
a->maskgen = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor = new fftw_plan[a->nfor]; // (fftw_plan *) malloc0 (a->nfor * sizeof (fftw_plan));
a->maskplan = new fftw_plan[a->nfor]; // (fftw_plan *) malloc0 (a->nfor * sizeof (fftw_plan));
for (i = 0; i < a->nfor; i++)
{
a->fftout[i] = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[i] = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor[i] = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->fftin, (fftw_complex *)a->fftout[i], FFTW_FORWARD, FFTW_PATIENT);
a->maskplan[i] = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->maskgen, (fftw_complex *)a->fmask[i], FFTW_FORWARD, FFTW_PATIENT);
}
a->accum = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->crev = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->accum, (fftw_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
}
void FIROPT::calc_firopt (FIROPT *a)
{
// call for change in frequency, rate, wintype, gain
// must also call after a call to plan_firopt()
int i;
double* impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain);
a->buffidx = 0;
for (i = 0; i < a->nfor; i++)
{
// I right-justified the impulse response => take output from left side of output buff, discard right side
// Be careful about flipping an asymmetrical impulse response.
memcpy (&(a->maskgen[2 * a->size]), &(impulse[2 * a->size * i]), a->size * sizeof(dcomplex));
fftw_execute (a->maskplan[i]);
}
delete[] (impulse);
}
FIROPT* FIROPT::create_firopt (int run, int position, int size, double* in, double* out,
int nc, double f_low, double f_high, int samplerate, int wintype, double gain)
{
FIROPT *a = new FIROPT;
a->run = run;
a->position = position;
a->size = size;
a->in = in;
a->out = out;
a->nc = nc;
a->f_low = f_low;
a->f_high = f_high;
a->samplerate = samplerate;
a->wintype = wintype;
a->gain = gain;
plan_firopt (a);
calc_firopt (a);
return a;
}
void FIROPT::deplan_firopt (FIROPT *a)
{
int i;
fftw_destroy_plan (a->crev);
delete[] (a->accum);
for (i = 0; i < a->nfor; i++)
{
delete[] (a->fftout[i]);
delete[] (a->fmask[i]);
fftw_destroy_plan (a->pcfor[i]);
fftw_destroy_plan (a->maskplan[i]);
}
delete[] (a->maskplan);
delete[] (a->pcfor);
delete[] (a->maskgen);
delete[] (a->fmask);
delete[] (a->fftout);
delete[] (a->fftin);
}
void FIROPT::destroy_firopt (FIROPT *a)
{
deplan_firopt (a);
delete (a);
}
void FIROPT::flush_firopt (FIROPT *a)
{
int i;
memset (a->fftin, 0, 2 * a->size * sizeof (dcomplex));
for (i = 0; i < a->nfor; i++)
memset (a->fftout[i], 0, 2 * a->size * sizeof (dcomplex));
a->buffidx = 0;
}
void FIROPT::xfiropt (FIROPT *a, int pos)
{
if (a->run && (a->position == pos))
{
int i, j, k;
memcpy (&(a->fftin[2 * a->size]), a->in, a->size * sizeof (dcomplex));
fftw_execute (a->pcfor[a->buffidx]);
k = a->buffidx;
memset (a->accum, 0, 2 * a->size * sizeof (dcomplex));
for (j = 0; j < a->nfor; j++)
{
for (i = 0; i < 2 * a->size; i++)
{
a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[j][2 * i + 1];
a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[j][2 * i + 0];
}
k = (k + a->idxmask) & a->idxmask;
}
a->buffidx = (a->buffidx + 1) & a->idxmask;
fftw_execute (a->crev);
memcpy (a->fftin, &(a->fftin[2 * a->size]), a->size * sizeof(dcomplex));
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void FIROPT::setBuffers_firopt (FIROPT *a, double* in, double* out)
{
a->in = in;
a->out = out;
deplan_firopt (a);
plan_firopt (a);
calc_firopt (a);
}
void FIROPT::setSamplerate_firopt (FIROPT *a, int rate)
{
a->samplerate = rate;
calc_firopt (a);
}
void FIROPT::setSize_firopt (FIROPT *a, int size)
{
a->size = size;
deplan_firopt (a);
plan_firopt (a);
calc_firopt (a);
}
void FIROPT::setFreqs_firopt (FIROPT *a, double f_low, double f_high)
{
a->f_low = f_low;
a->f_high = f_high;
calc_firopt (a);
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save Filter Kernel *
* *
********************************************************************************************************/
void FIRCORE::plan_fircore (FIRCORE *a)
{
// must call for change in 'nc', 'size', 'out'
int i;
a->nfor = a->nc / a->size;
a->cset = 0;
a->buffidx = 0;
a->idxmask = a->nfor - 1;
a->fftin = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->fftout = new double*[a->nfor]; // (double **) malloc0 (a->nfor * sizeof (double *));
a->fmask = new double**[2]; // (double ***) malloc0 (2 * sizeof (double **));
a->fmask[0] = new double*[a->nfor]; // (double **) malloc0 (a->nfor * sizeof (double *));
a->fmask[1] = new double*[a->nfor]; // (double **) malloc0 (a->nfor * sizeof (double *));
a->maskgen = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor = new fftw_plan[a->nfor]; // (fftw_plan *) malloc0 (a->nfor * sizeof (fftw_plan));
a->maskplan = new fftw_plan*[2]; // (fftw_plan **) malloc0 (2 * sizeof (fftw_plan *));
a->maskplan[0] = new fftw_plan[a->nfor]; // (fftw_plan *) malloc0 (a->nfor * sizeof (fftw_plan));
a->maskplan[1] = new fftw_plan[a->nfor]; // (fftw_plan *) malloc0 (a->nfor * sizeof (fftw_plan));
for (i = 0; i < a->nfor; i++)
{
a->fftout[i] = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[0][i] = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[1][i] = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor[i] = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->fftin, (fftw_complex *)a->fftout[i], FFTW_FORWARD, FFTW_PATIENT);
a->maskplan[0][i] = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->maskgen, (fftw_complex *)a->fmask[0][i], FFTW_FORWARD, FFTW_PATIENT);
a->maskplan[1][i] = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->maskgen, (fftw_complex *)a->fmask[1][i], FFTW_FORWARD, FFTW_PATIENT);
}
a->accum = new double[2 * a->size * 2]; // (double *) malloc0 (2 * a->size * sizeof (complex));
a->crev = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->accum, (fftw_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
a->masks_ready = 0;
}
void FIRCORE::calc_fircore (FIRCORE *a, int flip)
{
// call for change in frequency, rate, wintype, gain
// must also call after a call to plan_firopt()
int i;
if (a->mp)
FIR::mp_imp (a->nc, a->impulse, a->imp, 16, 0);
else
memcpy (a->imp, a->impulse, a->nc * sizeof (dcomplex));
for (i = 0; i < a->nfor; i++)
{
// I right-justified the impulse response => take output from left side of output buff, discard right side
// Be careful about flipping an asymmetrical impulse response.
memcpy (&(a->maskgen[2 * a->size]), &(a->imp[2 * a->size * i]), a->size * sizeof(dcomplex));
fftw_execute (a->maskplan[1 - a->cset][i]);
}
a->masks_ready = 1;
if (flip)
{
a->update.lock();
a->cset = 1 - a->cset;
a->update.unlock();
a->masks_ready = 0;
}
}
FIRCORE* FIRCORE::create_fircore (int size, double* in, double* out, int nc, int mp, double* impulse)
{
FIRCORE *a = new FIRCORE;
a->size = size;
a->in = in;
a->out = out;
a->nc = nc;
a->mp = mp;
// InitializeCriticalSectionAndSpinCount (&a->update, 2500);
plan_fircore (a);
a->impulse = new double[a->nc * 2]; // (double *) malloc0 (a->nc * sizeof (complex));
a->imp = new double[a->nc * 2]; // (double *) malloc0 (a->nc * sizeof (complex));
memcpy (a->impulse, impulse, a->nc * sizeof (dcomplex));
calc_fircore (a, 1);
return a;
}
void FIRCORE::deplan_fircore (FIRCORE *a)
{
int i;
fftw_destroy_plan (a->crev);
delete[] (a->accum);
for (i = 0; i < a->nfor; i++)
{
delete[] (a->fftout[i]);
delete[] (a->fmask[0][i]);
delete[] (a->fmask[1][i]);
fftw_destroy_plan (a->pcfor[i]);
fftw_destroy_plan (a->maskplan[0][i]);
fftw_destroy_plan (a->maskplan[1][i]);
}
delete[] (a->maskplan[0]);
delete[] (a->maskplan[1]);
delete[] (a->maskplan);
delete[] (a->pcfor);
delete[] (a->maskgen);
delete[] (a->fmask[0]);
delete[] (a->fmask[1]);
delete[] (a->fmask);
delete[] (a->fftout);
delete[] (a->fftin);
}
void FIRCORE::destroy_fircore (FIRCORE *a)
{
deplan_fircore (a);
delete[] (a->imp);
delete[] (a->impulse);
delete (a);
}
void FIRCORE::flush_fircore (FIRCORE *a)
{
int i;
memset (a->fftin, 0, 2 * a->size * sizeof (dcomplex));
for (i = 0; i < a->nfor; i++)
memset (a->fftout[i], 0, 2 * a->size * sizeof (dcomplex));
a->buffidx = 0;
}
void FIRCORE::xfircore (FIRCORE *a)
{
int i, j, k;
memcpy (&(a->fftin[2 * a->size]), a->in, a->size * sizeof (dcomplex));
fftw_execute (a->pcfor[a->buffidx]);
k = a->buffidx;
memset (a->accum, 0, 2 * a->size * sizeof (dcomplex));
a->update.lock();
for (j = 0; j < a->nfor; j++)
{
for (i = 0; i < 2 * a->size; i++)
{
a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 1];
a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 0];
}
k = (k + a->idxmask) & a->idxmask;
}
a->update.unlock();
a->buffidx = (a->buffidx + 1) & a->idxmask;
fftw_execute (a->crev);
memcpy (a->fftin, &(a->fftin[2 * a->size]), a->size * sizeof(dcomplex));
}
void FIRCORE::setBuffers_fircore (FIRCORE *a, double* in, double* out)
{
a->in = in;
a->out = out;
deplan_fircore (a);
plan_fircore (a);
calc_fircore (a, 1);
}
void FIRCORE::setSize_fircore (FIRCORE *a, int size)
{
a->size = size;
deplan_fircore (a);
plan_fircore (a);
calc_fircore (a, 1);
}
void FIRCORE::setImpulse_fircore (FIRCORE *a, double* impulse, int update)
{
memcpy (a->impulse, impulse, a->nc * sizeof (dcomplex));
calc_fircore (a, update);
}
void FIRCORE::setNc_fircore (FIRCORE *a, int nc, double* impulse)
{
// because of FFT planning, this will probably cause a glitch in audio if done during dataflow
deplan_fircore (a);
delete[] (a->impulse);
delete[] (a->imp);
a->nc = nc;
plan_fircore (a);
a->imp = new double[a->nc * 2]; // (double *) malloc0 (a->nc * sizeof (complex));
a->impulse = new double[a->nc * 2]; // (double *) malloc0 (a->nc * sizeof (complex));
memcpy (a->impulse, impulse, a->nc * sizeof (dcomplex));
calc_fircore (a, 1);
}
void FIRCORE::setMp_fircore (FIRCORE *a, int mp)
{
a->mp = mp;
calc_fircore (a, 1);
}
void FIRCORE::setUpdate_fircore (FIRCORE *a)
{
if (a->masks_ready)
{
a->update.lock();
a->cset = 1 - a->cset;
a->update.unlock();
a->masks_ready = 0;
}
}
} // namespace WDSP