mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-28 19:41:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			233 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2015 Edouard Griffiths, F4EXB.                                  //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <cmath>
 | |
| #include "dsp/afsquelch.h"
 | |
| 
 | |
| AFSquelch::AFSquelch() :
 | |
|             m_nbAvg(128),
 | |
| 			m_N(0),
 | |
| 			m_sampleRate(0),
 | |
| 			m_samplesProcessed(0),
 | |
| 			m_maxPowerIndex(0),
 | |
| 			m_nTones(2),
 | |
| 			m_samplesAttack(0),
 | |
| 			m_attackCount(0),
 | |
| 			m_samplesDecay(0),
 | |
| 			m_decayCount(0),
 | |
| 			m_isOpen(false),
 | |
| 			m_threshold(0.0)
 | |
| {
 | |
| 	m_k = new double[m_nTones];
 | |
| 	m_coef = new double[m_nTones];
 | |
| 	m_toneSet = new Real[m_nTones];
 | |
| 	m_u0 = new double[m_nTones];
 | |
| 	m_u1 = new double[m_nTones];
 | |
| 	m_power = new double[m_nTones];
 | |
| 	m_movingAverages.resize(m_nTones, MovingAverage<Real>(m_nbAvg, 0.0));
 | |
| 
 | |
| 	m_toneSet[0]  = 2000.0;
 | |
| 	m_toneSet[1]  = 10000.0;
 | |
| }
 | |
| 
 | |
| AFSquelch::AFSquelch(unsigned int nbTones, const Real *tones) :
 | |
| 			m_N(0),
 | |
|             m_nbAvg(0),
 | |
| 			m_sampleRate(0),
 | |
| 			m_samplesProcessed(0),
 | |
| 			m_maxPowerIndex(0),
 | |
| 			m_nTones(nbTones),
 | |
| 			m_samplesAttack(0),
 | |
| 			m_attackCount(0),
 | |
| 			m_samplesDecay(0),
 | |
| 			m_decayCount(0),
 | |
| 			m_isOpen(false),
 | |
| 			m_threshold(0.0)
 | |
| {
 | |
| 	m_k = new double[m_nTones];
 | |
| 	m_coef = new double[m_nTones];
 | |
| 	m_toneSet = new Real[m_nTones];
 | |
| 	m_u0 = new double[m_nTones];
 | |
| 	m_u1 = new double[m_nTones];
 | |
| 	m_power = new double[m_nTones];
 | |
| 
 | |
| 	for (int j = 0; j < m_nTones; ++j)
 | |
| 	{
 | |
| 		m_toneSet[j] = tones[j];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| AFSquelch::~AFSquelch()
 | |
| {
 | |
| 	delete[] m_k;
 | |
| 	delete[] m_coef;
 | |
| 	delete[] m_toneSet;
 | |
| 	delete[] m_u0;
 | |
| 	delete[] m_u1;
 | |
| 	delete[] m_power;
 | |
| }
 | |
| 
 | |
| 
 | |
| void AFSquelch::setCoefficients(int N, unsigned int nbAvg, int _samplerate, int _samplesAttack, int _samplesDecay )
 | |
| {
 | |
| 	m_N = N;                   // save the basic parameters for use during analysis
 | |
| 	m_nbAvg = nbAvg;
 | |
| 	m_sampleRate = _samplerate;
 | |
| 	m_samplesAttack = _samplesAttack;
 | |
| 	m_samplesDecay = _samplesDecay;
 | |
| 	m_movingAverages.resize(m_nTones, MovingAverage<Real>(m_nbAvg, 0.0));
 | |
| 
 | |
| 	// for each of the frequencies (tones) of interest calculate
 | |
| 	// k and the associated filter coefficient as per the Goertzel
 | |
| 	// algorithm. Note: we are using a real value (as apposed to
 | |
| 	// an integer as described in some references. k is retained
 | |
| 	// for later display. The tone set is specified in the
 | |
| 	// constructor. Notice that the resulting coefficients are
 | |
| 	// independent of N.
 | |
| 	for (int j = 0; j < m_nTones; ++j)
 | |
| 	{
 | |
| 		m_k[j] = ((double)m_N * m_toneSet[j]) / (double)m_sampleRate;
 | |
| 		m_coef[j] = 2.0 * cos((2.0 * M_PI * m_toneSet[j])/(double)m_sampleRate);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| // Analyze an input signal
 | |
| bool AFSquelch::analyze(Real sample)
 | |
| {
 | |
| 
 | |
| 	feedback(sample); // Goertzel feedback
 | |
| 	m_samplesProcessed += 1;
 | |
| 
 | |
| 	if (m_samplesProcessed == m_N) // completed a block of N
 | |
| 	{
 | |
| 		feedForward(); // calculate the power at each tone
 | |
| 		m_samplesProcessed = 0;
 | |
| 		return true; // have a result
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void AFSquelch::feedback(Real in)
 | |
| {
 | |
| 	double t;
 | |
| 
 | |
| 	// feedback for each tone
 | |
| 	for (int j = 0; j < m_nTones; ++j)
 | |
| 	{
 | |
| 		t = m_u0[j];
 | |
| 		m_u0[j] = in + (m_coef[j] * m_u0[j]) - m_u1[j];
 | |
| 		m_u1[j] = t;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void AFSquelch::feedForward()
 | |
| {
 | |
| 	for (int j = 0; j < m_nTones; ++j)
 | |
| 	{
 | |
| 		m_power[j] = (m_u0[j] * m_u0[j]) + (m_u1[j] * m_u1[j]) - (m_coef[j] * m_u0[j] * m_u1[j]);
 | |
| 		m_movingAverages[j].feed(m_power[j]);
 | |
| 		m_u0[j] = m_u1[j] = 0.0; // reset for next block.
 | |
| 	}
 | |
| 
 | |
| 	evaluate();
 | |
| }
 | |
| 
 | |
| 
 | |
| void AFSquelch::reset()
 | |
| {
 | |
| 	for (int j = 0; j < m_nTones; ++j)
 | |
| 	{
 | |
| 		m_power[j] = m_u0[j] = m_u1[j] = 0.0; // reset
 | |
| 		m_movingAverages[j].fill(0.0);
 | |
| 	}
 | |
| 
 | |
| 	m_samplesProcessed = 0;
 | |
| 	m_maxPowerIndex = 0;
 | |
| 	m_isOpen = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool AFSquelch::evaluate()
 | |
| {
 | |
| 	double maxPower = 0.0;
 | |
| 	double minPower;
 | |
| 	int minIndex = 0, maxIndex = 0;
 | |
| 
 | |
| 	for (int j = 0; j < m_nTones; ++j)
 | |
| 	{
 | |
| 		if (m_movingAverages[j].sum() > maxPower)
 | |
| 		{
 | |
| 			maxPower = m_movingAverages[j].sum();
 | |
| 			maxIndex = j;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	minPower = maxPower;
 | |
| 
 | |
| 	for (int j = 0; j < m_nTones; ++j)
 | |
| 	{
 | |
| 		if (m_movingAverages[j].sum() < minPower) {
 | |
| 			minPower = m_movingAverages[j].sum();
 | |
| 			minIndex = j;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// principle is to open if power is uneven because noise gives even power
 | |
| 	bool open = (minPower/maxPower < m_threshold) && (minIndex > maxIndex);
 | |
| 
 | |
| 	if (open)
 | |
| 	{
 | |
| 		if ((m_samplesAttack > 0) && (m_attackCount < m_samplesAttack))
 | |
| 		{
 | |
| 			m_isOpen = false;
 | |
| 			m_attackCount++;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			m_isOpen = true;
 | |
| 			m_decayCount = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if ((m_samplesDecay > 0) && (m_decayCount < m_samplesDecay))
 | |
| 		{
 | |
| 			m_isOpen = true;
 | |
| 			m_decayCount++;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			m_isOpen = false;
 | |
| 			m_attackCount = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return m_isOpen;
 | |
| }
 | |
| 
 | |
| void AFSquelch::setThreshold(double threshold)
 | |
| {
 | |
| 	qDebug("AFSquelch::setThreshold: threshold: %f", threshold);
 | |
| 	m_threshold = threshold;
 | |
| }
 |