CubicSDR/src/process/SpectrumVisualProcessor.cpp

377 lines
13 KiB
C++

#include "SpectrumVisualProcessor.h"
#include "CubicSDR.h"
SpectrumVisualProcessor::SpectrumVisualProcessor() : lastInputBandwidth(0), lastBandwidth(0), fftwInput(NULL), fftwOutput(NULL), fftInData(NULL), fftLastData(NULL), lastDataSize(0), fftw_plan(NULL), resampler(NULL), resamplerRatio(0) {
is_view.store(false);
fftSize.store(0);
centerFreq.store(0);
bandwidth.store(0);
hideDC.store(false);
freqShifter = nco_crcf_create(LIQUID_NCO);
shiftFrequency = 0;
fft_ceil_ma = fft_ceil_maa = 100.0;
fft_floor_ma = fft_floor_maa = 0.0;
desiredInputSize.store(0);
fft_average_rate = 0.65;
scaleFactor.store(1.0);
}
SpectrumVisualProcessor::~SpectrumVisualProcessor() {
nco_crcf_destroy(freqShifter);
}
bool SpectrumVisualProcessor::isView() {
return is_view.load();
}
void SpectrumVisualProcessor::setView(bool bView) {
busy_run.lock();
is_view.store(bView);
busy_run.unlock();
}
void SpectrumVisualProcessor::setFFTAverageRate(float fftAverageRate) {
busy_run.lock();
this->fft_average_rate.store(fftAverageRate);
busy_run.unlock();
}
float SpectrumVisualProcessor::getFFTAverageRate() {
return this->fft_average_rate.load();
}
void SpectrumVisualProcessor::setCenterFrequency(long long centerFreq_in) {
busy_run.lock();
centerFreq.store(centerFreq_in);
busy_run.unlock();
}
long long SpectrumVisualProcessor::getCenterFrequency() {
return centerFreq.load();
}
void SpectrumVisualProcessor::setBandwidth(long bandwidth_in) {
busy_run.lock();
bandwidth.store(bandwidth_in);
busy_run.unlock();
}
long SpectrumVisualProcessor::getBandwidth() {
return bandwidth.load();
}
int SpectrumVisualProcessor::getDesiredInputSize() {
return desiredInputSize.load();
}
void SpectrumVisualProcessor::setup(int fftSize_in) {
busy_run.lock();
fftSize = fftSize_in;
desiredInputSize.store(fftSize);
if (fftwInput) {
free(fftwInput);
}
fftwInput = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
if (fftInData) {
free(fftInData);
}
fftInData = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
if (fftLastData) {
free(fftLastData);
}
fftLastData = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
if (fftwOutput) {
free(fftwOutput);
}
fftwOutput = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
if (fftw_plan) {
fftwf_destroy_plan(fftw_plan);
}
fftw_plan = fftwf_plan_dft_1d(fftSize, fftwInput, fftwOutput, FFTW_FORWARD, FFTW_ESTIMATE);
busy_run.unlock();
}
void SpectrumVisualProcessor::setHideDC(bool hideDC) {
this->hideDC.store(hideDC);
}
void SpectrumVisualProcessor::process() {
if (!isOutputEmpty()) {
return;
}
if (!input || input->empty()) {
return;
}
DemodulatorThreadIQData *iqData;
input->pop(iqData);
if (!iqData) {
return;
}
iqData->busy_rw.lock();
busy_run.lock();
std::vector<liquid_float_complex> *data = &iqData->data;
if (data && data->size()) {
SpectrumVisualData *output = outputBuffers.getBuffer();
if (output->spectrum_points.size() < fftSize * 2) {
output->spectrum_points.resize(fftSize * 2);
}
unsigned int num_written;
if (is_view.load()) {
if (!iqData->frequency || !iqData->sampleRate) {
iqData->decRefCount();
iqData->busy_rw.unlock();
busy_run.unlock();
return;
}
resamplerRatio = (double) (bandwidth) / (double) iqData->sampleRate;
int desired_input_size = fftSize / resamplerRatio;
this->desiredInputSize.store(desired_input_size);
if (iqData->data.size() < desired_input_size) {
// std::cout << "fft underflow, desired: " << desired_input_size << " actual:" << input->data.size() << std::endl;
desired_input_size = iqData->data.size();
}
if (centerFreq != iqData->frequency) {
if ((centerFreq - iqData->frequency) != shiftFrequency || lastInputBandwidth != iqData->sampleRate) {
if (abs(iqData->frequency - centerFreq) < (wxGetApp().getSampleRate() / 2)) {
shiftFrequency = centerFreq - iqData->frequency;
nco_crcf_reset(freqShifter);
nco_crcf_set_frequency(freqShifter, (2.0 * M_PI) * (((double) abs(shiftFrequency)) / ((double) iqData->sampleRate)));
}
}
if (shiftBuffer.size() != desired_input_size) {
if (shiftBuffer.capacity() < desired_input_size) {
shiftBuffer.reserve(desired_input_size);
}
shiftBuffer.resize(desired_input_size);
}
if (shiftFrequency < 0) {
nco_crcf_mix_block_up(freqShifter, &iqData->data[0], &shiftBuffer[0], desired_input_size);
} else {
nco_crcf_mix_block_down(freqShifter, &iqData->data[0], &shiftBuffer[0], desired_input_size);
}
} else {
shiftBuffer.assign(iqData->data.begin(), iqData->data.end());
}
if (!resampler || bandwidth != lastBandwidth || lastInputBandwidth != iqData->sampleRate) {
float As = 60.0f;
if (resampler) {
msresamp_crcf_destroy(resampler);
}
resampler = msresamp_crcf_create(resamplerRatio, As);
lastBandwidth = bandwidth;
lastInputBandwidth = iqData->sampleRate;
}
int out_size = ceil((double) (desired_input_size) * resamplerRatio) + 512;
if (resampleBuffer.size() != out_size) {
if (resampleBuffer.capacity() < out_size) {
resampleBuffer.reserve(out_size);
}
resampleBuffer.resize(out_size);
}
msresamp_crcf_execute(resampler, &shiftBuffer[0], desired_input_size, &resampleBuffer[0], &num_written);
resampleBuffer.resize(fftSize);
if (num_written < fftSize) {
for (int i = 0; i < num_written; i++) {
fftInData[i][0] = resampleBuffer[i].real;
fftInData[i][1] = resampleBuffer[i].imag;
}
for (int i = num_written; i < fftSize; i++) {
fftInData[i][0] = 0;
fftInData[i][1] = 0;
}
} else {
for (int i = 0; i < fftSize; i++) {
fftInData[i][0] = resampleBuffer[i].real;
fftInData[i][1] = resampleBuffer[i].imag;
}
}
} else {
num_written = data->size();
if (data->size() < fftSize) {
for (int i = 0, iMax = data->size(); i < iMax; i++) {
fftInData[i][0] = (*data)[i].real;
fftInData[i][1] = (*data)[i].imag;
}
for (int i = data->size(); i < fftSize; i++) {
fftInData[i][0] = 0;
fftInData[i][1] = 0;
}
} else {
for (int i = 0; i < fftSize; i++) {
fftInData[i][0] = (*data)[i].real;
fftInData[i][1] = (*data)[i].imag;
}
}
}
bool execute = false;
if (num_written >= fftSize) {
execute = true;
memcpy(fftwInput, fftInData, fftSize * sizeof(fftwf_complex));
memcpy(fftLastData, fftwInput, fftSize * sizeof(fftwf_complex));
} else {
if (lastDataSize + num_written < fftSize) { // priming
unsigned int num_copy = fftSize - lastDataSize;
if (num_written > num_copy) {
num_copy = num_written;
}
memcpy(fftLastData, fftInData, num_copy * sizeof(fftwf_complex));
lastDataSize += num_copy;
} else {
unsigned int num_last = (fftSize - num_written);
memcpy(fftwInput, fftLastData + (lastDataSize - num_last), num_last * sizeof(fftwf_complex));
memcpy(fftwInput + num_last, fftInData, num_written * sizeof(fftwf_complex));
memcpy(fftLastData, fftwInput, fftSize * sizeof(fftwf_complex));
execute = true;
}
}
if (execute) {
fftwf_execute(fftw_plan);
float fft_ceil = 0, fft_floor = 1;
if (fft_result.size() < fftSize) {
fft_result.resize(fftSize);
fft_result_ma.resize(fftSize);
fft_result_maa.resize(fftSize);
}
for (int i = 0, iMax = fftSize / 2; i < iMax; i++) {
float a = fftwOutput[i][0];
float b = fftwOutput[i][1];
float c = sqrt(a * a + b * b);
float x = fftwOutput[fftSize / 2 + i][0];
float y = fftwOutput[fftSize / 2 + i][1];
float z = sqrt(x * x + y * y);
fft_result[i] = (z);
fft_result[fftSize / 2 + i] = (c);
}
for (int i = 0, iMax = fftSize; i < iMax; i++) {
if (is_view.load()) {
fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * fft_average_rate;
fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * fft_average_rate;
} else {
fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * fft_average_rate;
fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * fft_average_rate;
}
if (fft_result_maa[i] > fft_ceil) {
fft_ceil = fft_result_maa[i];
}
if (fft_result_maa[i] < fft_floor) {
fft_floor = fft_result_maa[i];
}
}
fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.05;
fft_ceil_maa = fft_ceil_maa + (fft_ceil_ma - fft_ceil_maa) * 0.05;
fft_floor_ma = fft_floor_ma + (fft_floor - fft_floor_ma) * 0.05;
fft_floor_maa = fft_floor_maa + (fft_floor_ma - fft_floor_maa) * 0.05;
float sf = scaleFactor.load();
for (int i = 0, iMax = fftSize; i < iMax; i++) {
float v = (log10(fft_result_maa[i]+0.25 - (fft_floor_maa-0.75)) / log10((fft_ceil_maa+0.25) - (fft_floor_maa-0.75)));
output->spectrum_points[i * 2] = ((float) i / (float) iMax);
output->spectrum_points[i * 2 + 1] = v*sf;
}
if (hideDC.load()) { // DC-spike removal
long long freqMin = centerFreq-(bandwidth/2);
long long freqMax = centerFreq+(bandwidth/2);
long long zeroPt = (iqData->frequency-freqMin);
if (freqMin < iqData->frequency && freqMax > iqData->frequency) {
int freqRange = int(freqMax-freqMin);
int freqStep = freqRange/fftSize;
int fftStart = (zeroPt/freqStep)-(2000/freqStep);
int fftEnd = (zeroPt/freqStep)+(2000/freqStep);
// std::cout << "range:" << freqRange << ", step: " << freqStep << ", start: " << fftStart << ", end: " << fftEnd << std::endl;
if (fftEnd-fftStart < 2) {
fftEnd++;
fftStart--;
}
int numSteps = (fftEnd-fftStart);
int halfWay = fftStart+(numSteps/2);
if ((fftEnd+numSteps/2+1 < fftSize) && (fftStart-numSteps/2-1 >= 0) && (fftEnd > fftStart)) {
int n = 1;
for (int i = fftStart; i < halfWay; i++) {
output->spectrum_points[i * 2 + 1] = output->spectrum_points[(fftStart - n) * 2 + 1];
n++;
}
n = 1;
for (int i = halfWay; i < fftEnd; i++) {
output->spectrum_points[i * 2 + 1] = output->spectrum_points[(fftEnd + n) * 2 + 1];
n++;
}
}
}
}
output->fft_ceiling = fft_ceil_maa/sf;
output->fft_floor = fft_floor_maa;
}
distribute(output);
}
iqData->decRefCount();
iqData->busy_rw.unlock();
busy_run.unlock();
}
void SpectrumVisualProcessor::setScaleFactor(float sf) {
scaleFactor.store(sf);
}
float SpectrumVisualProcessor::getScaleFactor() {
return scaleFactor.load();
}