SSB_HighSpeed_Modem/modem/fec/schifra_galois_field.hpp
Kurt Moraw 3deb0a09fd update
2020-10-27 16:41:16 +01:00

519 lines
18 KiB
C++

/*
(**************************************************************************)
(* *)
(* Schifra *)
(* Reed-Solomon Error Correcting Code Library *)
(* *)
(* Release Version 0.0.1 *)
(* http://www.schifra.com *)
(* Copyright (c) 2000-2020 Arash Partow, All Rights Reserved. *)
(* *)
(* The Schifra Reed-Solomon error correcting code library and all its *)
(* components are supplied under the terms of the General Schifra License *)
(* agreement. The contents of the Schifra Reed-Solomon error correcting *)
(* code library and all its components may not be copied or disclosed *)
(* except in accordance with the terms of that agreement. *)
(* *)
(* URL: http://www.schifra.com/license.html *)
(* *)
(**************************************************************************)
*/
#ifndef INCLUDE_SCHIFRA_GALOIS_FIELD_HPP
#define INCLUDE_SCHIFRA_GALOIS_FIELD_HPP
#include <algorithm>
#include <iostream>
#include <vector>
#include <limits>
#include <string>
namespace schifra
{
namespace galois
{
typedef int field_symbol;
const field_symbol GFERROR = -1;
class field
{
public:
field(const int pwr, const std::size_t primpoly_deg, const unsigned int* primitive_poly);
~field();
bool operator==(const field& gf) const;
bool operator!=(const field& gf) const;
inline field_symbol index(const field_symbol value) const
{
return index_of_[value];
}
inline field_symbol alpha(const field_symbol value) const
{
return alpha_to_[value];
}
inline unsigned int size() const
{
return field_size_;
}
inline unsigned int pwr() const
{
return power_;
}
inline unsigned int mask() const
{
return field_size_;
}
inline field_symbol add(const field_symbol& a, const field_symbol& b) const
{
return (a ^ b);
}
inline field_symbol sub(const field_symbol& a, const field_symbol& b) const
{
return (a ^ b);
}
inline field_symbol normalize(field_symbol x) const
{
while (x < 0)
{
x += static_cast<field_symbol>(field_size_);
}
while (x >= static_cast<field_symbol>(field_size_))
{
x -= static_cast<field_symbol>(field_size_);
x = (x >> power_) + (x & field_size_);
}
return x;
}
inline field_symbol mul(const field_symbol& a, const field_symbol& b) const
{
#if !defined(NO_GFLUT)
return mul_table_[a][b];
#else
if ((a == 0) || (b == 0))
return 0;
else
return alpha_to_[normalize(index_of_[a] + index_of_[b])];
#endif
}
inline field_symbol div(const field_symbol& a, const field_symbol& b) const
{
#if !defined(NO_GFLUT)
return div_table_[a][b];
#else
if ((a == 0) || (b == 0))
return 0;
else
return alpha_to_[normalize(index_of_[a] - index_of_[b] + field_size_)];
#endif
}
inline field_symbol exp(const field_symbol& a, int n) const
{
#if !defined(NO_GFLUT)
if (n >= 0)
return exp_table_[a][n & field_size_];
else
{
while (n < 0) n += field_size_;
return (n ? exp_table_[a][n] : 1);
}
#else
if (a != 0)
{
if (n < 0)
{
while (n < 0) n += field_size_;
return (n ? alpha_to_[normalize(index_of_[a] * n)] : 1);
}
else if (n)
return alpha_to_[normalize(index_of_[a] * static_cast<field_symbol>(n))];
else
return 1;
}
else
return 0;
#endif
}
#ifdef LINEAR_EXP_LUT
inline field_symbol* const linear_exp(const field_symbol& a) const
{
#if !defined(NO_GFLUT)
static const field_symbol upper_bound = 2 * field_size_;
if ((a >= 0) && (a <= upper_bound))
return linear_exp_table_[a];
else
return reinterpret_cast<field_symbol*>(0);
#else
return reinterpret_cast<field_symbol*>(0);
#endif
}
#endif
inline field_symbol inverse(const field_symbol& val) const
{
#if !defined(NO_GFLUT)
return mul_inverse_[val];
#else
return alpha_to_[normalize(field_size_ - index_of_[val])];
#endif
}
inline unsigned int prim_poly_term(const unsigned int index) const
{
return prim_poly_[index];
}
friend std::ostream& operator << (std::ostream& os, const field& gf);
private:
field();
field(const field& gfield);
field& operator=(const field& gfield);
void generate_field(const unsigned int* prim_poly_);
field_symbol gen_mul (const field_symbol& a, const field_symbol& b) const;
field_symbol gen_div (const field_symbol& a, const field_symbol& b) const;
field_symbol gen_exp (const field_symbol& a, const std::size_t& n) const;
field_symbol gen_inverse (const field_symbol& val) const;
std::size_t create_array(char buffer_[],
const std::size_t& length,
const std::size_t offset,
field_symbol** array);
std::size_t create_2d_array(char buffer_[],
std::size_t row_cnt, std::size_t col_cnt,
const std::size_t offset,
field_symbol*** array);
unsigned int power_;
std::size_t prim_poly_deg_;
unsigned int field_size_;
unsigned int prim_poly_hash_;
unsigned int* prim_poly_;
field_symbol* alpha_to_; // aka exponential or anti-log
field_symbol* index_of_; // aka log
field_symbol* mul_inverse_; // multiplicative inverse
field_symbol** mul_table_;
field_symbol** div_table_;
field_symbol** exp_table_;
field_symbol** linear_exp_table_;
char* buffer_;
};
inline field::field(const int pwr, const std::size_t primpoly_deg, const unsigned int* primitive_poly)
: power_(pwr),
prim_poly_deg_(primpoly_deg),
field_size_((1 << power_) - 1)
{
alpha_to_ = new field_symbol [field_size_ + 1];
index_of_ = new field_symbol [field_size_ + 1];
#if !defined(NO_GFLUT)
#ifdef LINEAR_EXP_LUT
static const std::size_t buffer_size = ((6 * (field_size_ + 1) * (field_size_ + 1)) + ((field_size_ + 1) * 2)) * sizeof(field_symbol);
#else
static const std::size_t buffer_size = ((4 * (field_size_ + 1) * (field_size_ + 1)) + ((field_size_ + 1) * 2)) * sizeof(field_symbol);
#endif
buffer_ = new char[buffer_size];
std::size_t offset = 0;
offset = create_2d_array(buffer_,(field_size_ + 1),(field_size_ + 1),offset,&mul_table_);
offset = create_2d_array(buffer_,(field_size_ + 1),(field_size_ + 1),offset,&div_table_);
offset = create_2d_array(buffer_,(field_size_ + 1),(field_size_ + 1),offset,&exp_table_);
#ifdef LINEAR_EXP_LUT
offset = create_2d_array(buffer_,(field_size_ + 1),(field_size_ + 1) * 2,offset,&linear_exp_table_);
#else
linear_exp_table_ = 0;
#endif
offset = create_array(buffer_,(field_size_ + 1) * 2,offset,&mul_inverse_);
#else
buffer_ = 0;
mul_table_ = 0;
div_table_ = 0;
exp_table_ = 0;
mul_inverse_ = 0;
linear_exp_table_ = 0;
#endif
prim_poly_ = new unsigned int [prim_poly_deg_ + 1];
for (unsigned int i = 0; i < (prim_poly_deg_ + 1); ++i)
{
prim_poly_[i] = primitive_poly[i];
}
prim_poly_hash_ = 0xAAAAAAAA;
for (std::size_t i = 0; i < (prim_poly_deg_ + 1); ++i)
{
prim_poly_hash_ += ((i & 1) == 0) ? ( (prim_poly_hash_ << 7) ^ primitive_poly[i] * (prim_poly_hash_ >> 3)) :
(~((prim_poly_hash_ << 11) + (primitive_poly[i] ^ (prim_poly_hash_ >> 5))));
}
generate_field(primitive_poly);
}
inline field::~field()
{
if (0 != alpha_to_) { delete [] alpha_to_; alpha_to_ = 0; }
if (0 != index_of_) { delete [] index_of_; index_of_ = 0; }
if (0 != prim_poly_) { delete [] prim_poly_; prim_poly_ = 0; }
#if !defined(NO_GFLUT)
if (0 != mul_table_) { delete [] mul_table_; mul_table_ = 0; }
if (0 != div_table_) { delete [] div_table_; div_table_ = 0; }
if (0 != exp_table_) { delete [] exp_table_; exp_table_ = 0; }
#ifdef LINEAR_EXP_LUT
if (0 != linear_exp_table_) { delete [] linear_exp_table_; linear_exp_table_ = 0; }
#endif
if (0 != buffer_) { delete [] buffer_; buffer_ = 0; }
#endif
}
inline bool field::operator==(const field& gf) const
{
return (
(this->power_ == gf.power_) &&
(this->prim_poly_hash_ == gf.prim_poly_hash_)
);
}
inline bool field::operator!=(const field& gf) const
{
return !field::operator ==(gf);
}
inline void field::generate_field(const unsigned int* prim_poly)
{
/*
Note: It is assumed that the degree of the primitive
polynomial will be equivelent to the m value as
in GF(2^m)
*/
field_symbol mask = 1;
alpha_to_[power_] = 0;
for (field_symbol i = 0; i < static_cast<field_symbol>(power_); ++i)
{
alpha_to_[i] = mask;
index_of_[alpha_to_[i]] = i;
if (prim_poly[i] != 0)
{
alpha_to_[power_] ^= mask;
}
mask <<= 1;
}
index_of_[alpha_to_[power_]] = power_;
mask >>= 1;
for (field_symbol i = power_ + 1; i < static_cast<field_symbol>(field_size_); ++i)
{
if (alpha_to_[i - 1] >= mask)
alpha_to_[i] = alpha_to_[power_] ^ ((alpha_to_[i - 1] ^ mask) << 1);
else
alpha_to_[i] = alpha_to_[i - 1] << 1;
index_of_[alpha_to_[i]] = i;
}
index_of_[0] = GFERROR;
alpha_to_[field_size_] = 1;
#if !defined(NO_GFLUT)
for (field_symbol i = 0; i < static_cast<field_symbol>(field_size_ + 1); ++i)
{
for (field_symbol j = 0; j < static_cast<field_symbol>(field_size_ + 1); ++j)
{
mul_table_[i][j] = gen_mul(i,j);
div_table_[i][j] = gen_div(i,j);
exp_table_[i][j] = gen_exp(i,j);
}
}
#ifdef LINEAR_EXP_LUT
for (field_symbol i = 0; i < static_cast<field_symbol>(field_size_ + 1); ++i)
{
for (int j = 0; j < static_cast<field_symbol>(2 * field_size_); ++j)
{
linear_exp_table_[i][j] = gen_exp(i,j);
}
}
#endif
for (field_symbol i = 0; i < static_cast<field_symbol>(field_size_ + 1); ++i)
{
mul_inverse_[i] = gen_inverse(i);
mul_inverse_[i + (field_size_ + 1)] = mul_inverse_[i];
}
#endif
}
inline field_symbol field::gen_mul(const field_symbol& a, const field_symbol& b) const
{
if ((a == 0) || (b == 0))
return 0;
else
return alpha_to_[normalize(index_of_[a] + index_of_[b])];
}
inline field_symbol field::gen_div(const field_symbol& a, const field_symbol& b) const
{
if ((a == 0) || (b == 0))
return 0;
else
return alpha_to_[normalize(index_of_[a] - index_of_[b] + field_size_)];
}
inline field_symbol field::gen_exp(const field_symbol& a, const std::size_t& n) const
{
if (a != 0)
return ((n == 0) ? 1 : alpha_to_[normalize(index_of_[a] * static_cast<field_symbol>(n))]);
else
return 0;
}
inline field_symbol field::gen_inverse(const field_symbol& val) const
{
return alpha_to_[normalize(field_size_ - index_of_[val])];
}
inline std::size_t field::create_array(char buffer[],
const std::size_t& length,
const std::size_t offset,
field_symbol** array)
{
const std::size_t row_size = length * sizeof(field_symbol);
(*array) = new(buffer + offset)field_symbol[length];
return row_size + offset;
}
inline std::size_t field::create_2d_array(char buffer[],
std::size_t row_cnt, std::size_t col_cnt,
const std::size_t offset,
field_symbol*** array)
{
const std::size_t row_size = col_cnt * sizeof(field_symbol);
char* buffer__offset = buffer + offset;
(*array) = new field_symbol* [row_cnt];
for (std::size_t i = 0; i < row_cnt; ++i)
{
(*array)[i] = new(buffer__offset + (i * row_size))field_symbol[col_cnt];
}
return (row_cnt * row_size) + offset;
}
inline std::ostream& operator << (std::ostream& os, const field& gf)
{
for (std::size_t i = 0; i < (gf.field_size_ + 1); ++i)
{
os << i << "\t" << gf.alpha_to_[i] << "\t" << gf.index_of_[i] << std::endl;
}
return os;
}
/* 1x^0 + 1x^1 + 0x^2 + 1x^3 */
const unsigned int primitive_polynomial00[] = {1, 1, 0, 1};
const unsigned int primitive_polynomial_size00 = 4;
/* 1x^0 + 1x^1 + 0x^2 + 0x^3 + 1x^4*/
const unsigned int primitive_polynomial01[] = {1, 1, 0, 0, 1};
const unsigned int primitive_polynomial_size01 = 5;
/* 1x^0 + 0x^1 + 1x^2 + 0x^3 + 0x^4 + 1x^5 */
const unsigned int primitive_polynomial02[] = {1, 0, 1, 0, 0, 1};
const unsigned int primitive_polynomial_size02 = 6;
/* 1x^0 + 1x^1 + 0x^2 + 0x^3 + 0x^4 + 0x^5 + 1x^6 */
const unsigned int primitive_polynomial03[] = {1, 1, 0, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size03 = 7;
/* 1x^0 + 0x^1 + 0x^2 + 1x^3 + 0x^4 + 0x^5 + 0x^6 + 1x^7 */
const unsigned int primitive_polynomial04[] = {1, 0, 0, 1, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size04 = 8;
/* 1x^0 + 0x^1 + 1x^2 + 1x^3 + 1x^4 + 0x^5 + 0x^6 + 0x^7 + 1x^8 */
const unsigned int primitive_polynomial05[] = {1, 0, 1, 1, 1, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size05 = 9;
/* 1x^0 + 1x^1 + 1x^2 + 0x^3 + 0x^4 + 0x^5 + 0x^6 + 1x^7 + 1x^8 */
const unsigned int primitive_polynomial06[] = {1, 1, 1, 0, 0, 0, 0, 1, 1};
const unsigned int primitive_polynomial_size06 = 9;
/* 1x^0 + 0x^1 + 0x^2 + 0x^3 + 1x^4 + 0x^5 + 0x^6 + 0x^7 + 0x^8 + 1x^9 */
const unsigned int primitive_polynomial07[] = {1, 0, 0, 0, 1, 0, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size07 = 10;
/* 1x^0 + 0x^1 + 0x^2 + 1x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 + 0x^8 + 0x^9 + 1x^10 */
const unsigned int primitive_polynomial08[] = {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size08 = 11;
/* 1x^0 + 0x^1 + 1x^2 + 0x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 + 0x^8 + 0x^9 + 0x^10 + 1x^11 */
const unsigned int primitive_polynomial09[] = {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size09 = 12;
/* 1x^0 + 1x^1 + 0x^2 + 0x^3 + 1x^4 + 0x^5 + 1x^6 + 0x^7 + 0x^8 + 0x^9 + 0x^10 + 0x^11 + 1x^12 */
const unsigned int primitive_polynomial10[] = {1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size10 = 13;
/* 1x^0 + 1x^1 + 0x^2 + 1x^3 + 1x^4 + 0x^5 + 0x^6 + 0x^7 + 0x^8 + 0x^9 + 0x^10 + 0x^11 + 0x^12 + 1x^13 */
const unsigned int primitive_polynomial11[] = {1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size11 = 14;
/* 1x^0 + 1x^1 + 0x^2 + 0x^3 + 0x^4 + 0x^5 + 1x^6 + 0x^7 + 0x^8 + 0x^9 + 1x^10 + 0x^11 + 0x^12 + 0x^13 + 1x^14 */
const unsigned int primitive_polynomial12[] = {1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size12 = 15;
/* 1x^0 + 1x^1 + 0x^2 + 0x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 + 0x^8 + 0x^9 + 0x^10 + 0x^11 + 0x^12 + 0x^13 + 0x^14 + 1x^15 */
const unsigned int primitive_polynomial13[] = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size13 = 16;
/* 1x^0 + 1x^1 + 0x^2 + 1x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 + 0x^8 + 0x^9 + 0x^10 + 0x^11 + 1x^12 + 0x^13 + 0x^14 + 0x^15 + 1x^16 */
const unsigned int primitive_polynomial14[] = {1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1};
const unsigned int primitive_polynomial_size14 = 17;
} // namespace galois
} // namespace schifra
#endif