mirror of
https://github.com/dj0abr/SSB_HighSpeed_Modem.git
synced 2024-11-22 12:19:49 -05:00
500 lines
17 KiB
C++
Executable File
500 lines
17 KiB
C++
Executable File
/*
|
|
(**************************************************************************)
|
|
(* *)
|
|
(* Schifra *)
|
|
(* Reed-Solomon Error Correcting Code Library *)
|
|
(* *)
|
|
(* Release Version 0.0.1 *)
|
|
(* http://www.schifra.com *)
|
|
(* Copyright (c) 2000-2020 Arash Partow, All Rights Reserved. *)
|
|
(* *)
|
|
(* The Schifra Reed-Solomon error correcting code library and all its *)
|
|
(* components are supplied under the terms of the General Schifra License *)
|
|
(* agreement. The contents of the Schifra Reed-Solomon error correcting *)
|
|
(* code library and all its components may not be copied or disclosed *)
|
|
(* except in accordance with the terms of that agreement. *)
|
|
(* *)
|
|
(* URL: http://www.schifra.com/license.html *)
|
|
(* *)
|
|
(**************************************************************************)
|
|
*/
|
|
|
|
|
|
#ifndef INCLUDE_SCHIFRA_REED_SOLOMON_DECODER_HPP
|
|
#define INCLUDE_SCHIFRA_REED_SOLOMON_DECODER_HPP
|
|
|
|
|
|
#include "schifra_galois_field.hpp"
|
|
#include "schifra_galois_field_element.hpp"
|
|
#include "schifra_galois_field_polynomial.hpp"
|
|
#include "schifra_reed_solomon_block.hpp"
|
|
#include "schifra_ecc_traits.hpp"
|
|
|
|
|
|
namespace schifra
|
|
{
|
|
namespace reed_solomon
|
|
{
|
|
|
|
template <std::size_t code_length, std::size_t fec_length, std::size_t data_length = code_length - fec_length>
|
|
class decoder
|
|
{
|
|
public:
|
|
|
|
typedef traits::reed_solomon_triat<code_length,fec_length,data_length> trait;
|
|
typedef block<code_length,fec_length> block_type;
|
|
|
|
decoder(const galois::field& field, const unsigned int& gen_initial_index = 0)
|
|
: decoder_valid_(field.size() == code_length),
|
|
field_(field),
|
|
X_(galois::generate_X(field_)),
|
|
gen_initial_index_(gen_initial_index)
|
|
{
|
|
if (decoder_valid_)
|
|
{
|
|
//Note: code_length and field size can be used interchangeably
|
|
create_lookup_tables();
|
|
}
|
|
};
|
|
|
|
const galois::field& field() const
|
|
{
|
|
return field_;
|
|
}
|
|
|
|
bool decode(block_type& rsblock) const
|
|
{
|
|
std::vector<std::size_t> erasure_list;
|
|
return decode(rsblock,erasure_list);
|
|
}
|
|
|
|
bool decode(block_type& rsblock, const erasure_locations_t& erasure_list) const
|
|
{
|
|
if ((!decoder_valid_) || (erasure_list.size() > fec_length))
|
|
{
|
|
rsblock.errors_detected = 0;
|
|
rsblock.errors_corrected = 0;
|
|
rsblock.zero_numerators = 0;
|
|
rsblock.unrecoverable = true;
|
|
rsblock.error = block_type::e_decoder_error0;
|
|
|
|
return false;
|
|
}
|
|
|
|
galois::field_polynomial received(field_,code_length - 1);
|
|
load_message(received,rsblock);
|
|
|
|
galois::field_polynomial syndrome(field_);
|
|
|
|
if (compute_syndrome(received,syndrome) == 0)
|
|
{
|
|
rsblock.errors_detected = 0;
|
|
rsblock.errors_corrected = 0;
|
|
rsblock.zero_numerators = 0;
|
|
rsblock.unrecoverable = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
galois::field_polynomial lambda(galois::field_element(field_,1));
|
|
|
|
erasure_locations_t erasure_locations;
|
|
|
|
if (!erasure_list.empty())
|
|
{
|
|
prepare_erasure_list(erasure_locations, erasure_list);
|
|
|
|
compute_gamma(lambda, erasure_locations);
|
|
}
|
|
|
|
if (erasure_list.size() < fec_length)
|
|
{
|
|
modified_berlekamp_massey_algorithm(lambda, syndrome, erasure_list.size());
|
|
}
|
|
|
|
std::vector<int> error_locations;
|
|
|
|
find_roots(lambda, error_locations);
|
|
|
|
if (0 == error_locations.size())
|
|
{
|
|
/*
|
|
Syndrome is non-zero yet no error locations have
|
|
been obtained, conclusion:
|
|
It is possible that there are MORE errrors in the
|
|
message than can be detected and corrected for this
|
|
particular code.
|
|
*/
|
|
|
|
rsblock.errors_detected = 0;
|
|
rsblock.errors_corrected = 0;
|
|
rsblock.zero_numerators = 0;
|
|
rsblock.unrecoverable = true;
|
|
rsblock.error = block_type::e_decoder_error1;
|
|
|
|
return false;
|
|
}
|
|
else if (((2 * error_locations.size()) - erasure_list.size()) > fec_length)
|
|
{
|
|
/*
|
|
Too many errors\erasures! 2E + S <= fec_length
|
|
L = E + S
|
|
E = L - S
|
|
2E = 2L - 2S
|
|
2E + S = 2L - 2S + S
|
|
= 2L - S
|
|
Where:
|
|
L : Error Locations
|
|
E : Errors
|
|
S : Erasures
|
|
|
|
*/
|
|
|
|
rsblock.errors_detected = error_locations.size();
|
|
rsblock.errors_corrected = 0;
|
|
rsblock.zero_numerators = 0;
|
|
rsblock.unrecoverable = true;
|
|
rsblock.error = block_type::e_decoder_error2;
|
|
|
|
return false;
|
|
}
|
|
else
|
|
rsblock.errors_detected = error_locations.size();
|
|
|
|
return forney_algorithm(error_locations, lambda, syndrome, rsblock);
|
|
}
|
|
|
|
private:
|
|
|
|
decoder();
|
|
decoder(const decoder& dec);
|
|
decoder& operator=(const decoder& dec);
|
|
|
|
protected:
|
|
|
|
void load_message(galois::field_polynomial& received, const block_type& rsblock) const
|
|
{
|
|
/*
|
|
Load message data into received polynomial in reverse order.
|
|
*/
|
|
|
|
for (std::size_t i = 0; i < code_length; ++i)
|
|
{
|
|
received[code_length - 1 - i] = rsblock[i];
|
|
}
|
|
}
|
|
|
|
void create_lookup_tables()
|
|
{
|
|
root_exponent_table_.reserve(field_.size() + 1);
|
|
|
|
for (int i = 0; i < static_cast<int>(field_.size() + 1); ++i)
|
|
{
|
|
root_exponent_table_.push_back(field_.exp(field_.alpha(code_length - i),(1 - gen_initial_index_)));
|
|
}
|
|
|
|
syndrome_exponent_table_.reserve(fec_length);
|
|
|
|
for (int i = 0; i < static_cast<int>(fec_length); ++i)
|
|
{
|
|
syndrome_exponent_table_.push_back(field_.alpha(gen_initial_index_ + i));
|
|
}
|
|
|
|
gamma_table_.reserve(field_.size() + 1);
|
|
|
|
for (int i = 0; i < static_cast<int>(field_.size() + 1); ++i)
|
|
{
|
|
gamma_table_.push_back((1 + (X_ * galois::field_element(field_,field_.alpha(i)))));
|
|
}
|
|
}
|
|
|
|
void prepare_erasure_list(erasure_locations_t& erasure_locations, const erasure_locations_t& erasure_list) const
|
|
{
|
|
/*
|
|
Note: 1. Erasure positions must be unique.
|
|
2. Erasure positions must exist within the code block.
|
|
There are NO exceptions to these rules!
|
|
*/
|
|
|
|
erasure_locations.resize(erasure_list.size());
|
|
|
|
for (std::size_t i = 0; i < erasure_list.size(); ++i)
|
|
{
|
|
erasure_locations[i] = (code_length - 1 - erasure_list[i]);
|
|
}
|
|
}
|
|
|
|
int compute_syndrome(const galois::field_polynomial& received,
|
|
galois::field_polynomial& syndrome) const
|
|
{
|
|
int error_flag = 0;
|
|
syndrome = galois::field_polynomial(field_,fec_length - 1);
|
|
|
|
for (std::size_t i = 0; i < fec_length; ++i)
|
|
{
|
|
syndrome[i] = received(syndrome_exponent_table_[i]);
|
|
error_flag |= syndrome[i].poly();
|
|
}
|
|
|
|
return error_flag;
|
|
}
|
|
|
|
void compute_gamma(galois::field_polynomial& gamma, const erasure_locations_t& erasure_locations) const
|
|
{
|
|
for (std::size_t i = 0; i < erasure_locations.size(); ++i)
|
|
{
|
|
gamma *= gamma_table_[erasure_locations[i]];
|
|
}
|
|
}
|
|
|
|
void find_roots(const galois::field_polynomial& poly, std::vector<int>& root_list) const
|
|
{
|
|
/*
|
|
Chien Search: Find the roots of the error locator polynomial
|
|
via an exhaustive search over all non-zero elements in the
|
|
given finite field.
|
|
*/
|
|
|
|
root_list.reserve(fec_length << 1);
|
|
root_list.resize(0);
|
|
|
|
const std::size_t polynomial_degree = poly.deg();
|
|
|
|
for (int i = 1; i <= static_cast<int>(code_length); ++i)
|
|
{
|
|
if (0 == poly(field_.alpha(i)).poly())
|
|
{
|
|
root_list.push_back(i);
|
|
|
|
if (polynomial_degree == root_list.size())
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void compute_discrepancy(galois::field_element& discrepancy,
|
|
const galois::field_polynomial& lambda,
|
|
const galois::field_polynomial& syndrome,
|
|
const std::size_t& l,
|
|
const std::size_t& round) const
|
|
{
|
|
/*
|
|
*
|
|
Compute the lambda discrepancy at the current round of BMA
|
|
|
|
min: if(a<b)?a:b
|
|
*/
|
|
|
|
// std::size_t upper_bound = std::min(static_cast<int>(l), lambda.deg());
|
|
// does not compile under Windows and has been replaced with:
|
|
|
|
|
|
std::size_t bb = lambda.deg();
|
|
std::size_t aa = static_cast<int>(l);
|
|
|
|
std::size_t upper_bound = 0;
|
|
if (aa < bb)
|
|
upper_bound = aa;
|
|
else
|
|
upper_bound = bb;
|
|
|
|
discrepancy = 0;
|
|
|
|
for (std::size_t i = 0; i <= upper_bound; ++i)
|
|
{
|
|
discrepancy += lambda[i] * syndrome[round - i];
|
|
}
|
|
}
|
|
|
|
void modified_berlekamp_massey_algorithm(galois::field_polynomial& lambda,
|
|
const galois::field_polynomial& syndrome,
|
|
const std::size_t erasure_count) const
|
|
{
|
|
/*
|
|
Modified Berlekamp-Massey Algorithm
|
|
Identify the shortest length linear feed-back shift register (LFSR)
|
|
that will generate the sequence equivalent to the syndrome.
|
|
*/
|
|
|
|
int i = -1;
|
|
std::size_t l = erasure_count;
|
|
|
|
galois::field_element discrepancy(field_,0);
|
|
galois::field_polynomial previous_lambda = lambda << 1;
|
|
|
|
for (std::size_t round = erasure_count; round < fec_length; ++round)
|
|
{
|
|
compute_discrepancy(discrepancy, lambda, syndrome, l, round);
|
|
|
|
if (discrepancy != 0)
|
|
{
|
|
galois::field_polynomial tau = lambda - (discrepancy * previous_lambda);
|
|
|
|
if (static_cast<int>(l) < (static_cast<int>(round) - i))
|
|
{
|
|
const std::size_t tmp = round - i;
|
|
i = static_cast<int>(round - l);
|
|
l = tmp;
|
|
previous_lambda = lambda / discrepancy;
|
|
}
|
|
|
|
lambda = tau;
|
|
}
|
|
|
|
previous_lambda <<= 1;
|
|
}
|
|
}
|
|
|
|
bool forney_algorithm(const std::vector<int>& error_locations,
|
|
const galois::field_polynomial& lambda,
|
|
const galois::field_polynomial& syndrome,
|
|
block_type& rsblock) const
|
|
{
|
|
/*
|
|
The Forney algorithm for computing the error magnitudes
|
|
*/
|
|
const galois::field_polynomial omega = (lambda * syndrome) % fec_length;
|
|
const galois::field_polynomial lambda_derivative = lambda.derivative();
|
|
|
|
rsblock.errors_corrected = 0;
|
|
rsblock.zero_numerators = 0;
|
|
|
|
for (std::size_t i = 0; i < error_locations.size(); ++i)
|
|
{
|
|
const unsigned int error_location = error_locations[i];
|
|
const galois::field_symbol alpha_inverse = field_.alpha(error_location);
|
|
const galois::field_symbol numerator = (omega(alpha_inverse) * root_exponent_table_[error_location]).poly();
|
|
const galois::field_symbol denominator = lambda_derivative(alpha_inverse).poly();
|
|
|
|
if (0 != numerator)
|
|
{
|
|
if (0 != denominator)
|
|
{
|
|
rsblock[error_location - 1] ^= field_.div(numerator, denominator);
|
|
rsblock.errors_corrected++;
|
|
}
|
|
else
|
|
{
|
|
rsblock.unrecoverable = true;
|
|
rsblock.error = block_type::e_decoder_error3;
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
++rsblock.zero_numerators;
|
|
}
|
|
|
|
if (lambda.deg() == static_cast<int>(rsblock.errors_detected))
|
|
return true;
|
|
else
|
|
{
|
|
rsblock.unrecoverable = true;
|
|
rsblock.error = block_type::e_decoder_error4;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
protected:
|
|
|
|
bool decoder_valid_;
|
|
const galois::field& field_;
|
|
std::vector<galois::field_symbol> root_exponent_table_;
|
|
std::vector<galois::field_symbol> syndrome_exponent_table_;
|
|
std::vector<galois::field_polynomial> gamma_table_;
|
|
const galois::field_polynomial X_;
|
|
const unsigned int gen_initial_index_;
|
|
};
|
|
|
|
template <std::size_t code_length,
|
|
std::size_t fec_length,
|
|
std::size_t data_length = code_length - fec_length,
|
|
std::size_t natural_length = 255, // Needs to be in-sync with field size
|
|
std::size_t padding_length = natural_length - data_length - fec_length>
|
|
class shortened_decoder
|
|
{
|
|
public:
|
|
|
|
typedef traits::reed_solomon_triat<code_length,fec_length,data_length> trait;
|
|
typedef block<code_length,fec_length> block_type;
|
|
|
|
shortened_decoder(const galois::field& field, const unsigned int gen_initial_index = 0)
|
|
: decoder_(field, gen_initial_index)
|
|
{}
|
|
|
|
inline bool decode(block_type& rsblock, const erasure_locations_t& erasure_list) const
|
|
{
|
|
typename natural_decoder_type::block_type block;
|
|
|
|
std::fill_n(&block[0], padding_length, typename block_type::symbol_type(0));
|
|
|
|
for (std::size_t i = 0; i < code_length; ++i)
|
|
{
|
|
block.data[padding_length + i] = rsblock.data[i];
|
|
}
|
|
|
|
erasure_locations_t shifted_position_erasure_list(erasure_list.size(),0);
|
|
|
|
for (std::size_t i = 0; i < erasure_list.size(); ++i)
|
|
{
|
|
shifted_position_erasure_list[i] = erasure_list[i] + padding_length;
|
|
}
|
|
|
|
if (decoder_.decode(block, shifted_position_erasure_list))
|
|
{
|
|
for (std::size_t i = 0; i < code_length; ++i)
|
|
{
|
|
rsblock.data[i] = block.data[padding_length + i];
|
|
}
|
|
|
|
rsblock.copy_state(block);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
rsblock.copy_state(block);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool decode(block_type& rsblock) const
|
|
{
|
|
typename natural_decoder_type::block_type block;
|
|
|
|
std::fill_n(&block[0], padding_length, typename block_type::symbol_type(0));
|
|
|
|
for (std::size_t i = 0; i < code_length; ++i)
|
|
{
|
|
block.data[padding_length + i] = rsblock.data[i];
|
|
}
|
|
|
|
if (decoder_.decode(block))
|
|
{
|
|
for (std::size_t i = 0; i < code_length; ++i)
|
|
{
|
|
rsblock.data[i] = block.data[padding_length + i];
|
|
}
|
|
|
|
rsblock.copy_state(block);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
rsblock.copy_state(block);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
typedef decoder<natural_length,fec_length> natural_decoder_type;
|
|
const natural_decoder_type decoder_;
|
|
};
|
|
|
|
} // namespace reed_solomon
|
|
|
|
} // namespace schifra
|
|
|
|
#endif
|