The commit b5810039a5 contains the note
A last caveat: the ZERO_PAGE is now refcounted and managed with rmap
(and thus mapcounted and count towards shared rss). These writes to
the struct page could cause excessive cacheline bouncing on big
systems. There are a number of ways this could be addressed if it is
an issue.
And indeed this cacheline bouncing has shown up on large SGI systems.
There was a situation where an Altix system was essentially livelocked
tearing down ZERO_PAGE pagetables when an HPC app aborted during startup.
This situation can be avoided in userspace, but it does highlight the
potential scalability problem with refcounting ZERO_PAGE, and corner
cases where it can really hurt (we don't want the system to livelock!).
There are several broad ways to fix this problem:
1. add back some special casing to avoid refcounting ZERO_PAGE
2. per-node or per-cpu ZERO_PAGES
3. remove the ZERO_PAGE completely
I will argue for 3. The others should also fix the problem, but they
result in more complex code than does 3, with little or no real benefit
that I can see.
Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a
false optimisation: if an application is performance critical, it would
not be doing many read faults of new memory, or at least it could be
expected to write to that memory soon afterwards. If cache or memory use
is critical, it should not be working with a significant number of
ZERO_PAGEs anyway (a more compact representation of zeroes should be
used).
As a sanity check -- mesuring on my desktop system, there are never many
mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not
increase much without it.
When running a make -j4 kernel compile on my dual core system, there are
about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000
ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second
is torn down without being COWed). So removing ZERO_PAGE will save 1,000
page faults per second when running kbuild, while keeping it only saves
less than 1 page clearing operation per second. 1 page clear is cheaper
than a thousand faults, presumably, so there isn't an obvious loss.
Neither the logical argument nor these basic tests give a guarantee of no
regressions. However, this is a reasonable opportunity to try to remove
the ZERO_PAGE from the pagefault path. If it is found to cause regressions,
we can reintroduce it and just avoid refcounting it.
The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see
much use to them except on benchmarks. All other users of ZERO_PAGE are
converted just to use ZERO_PAGE(0) for simplicity. We can look at
replacing them all and maybe ripping out ZERO_PAGE completely when we are
more satisfied with this solution.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
This gets rid of all kmalloc caches larger than page size. A kmalloc
request larger than PAGE_SIZE > 2 is going to be passed through to the page
allocator. This works both inline where we will call __get_free_pages
instead of kmem_cache_alloc and in __kmalloc.
kfree is modified to check if the object is in a slab page. If not then
the page is freed via the page allocator instead. Roughly similar to what
SLOB does.
Advantages:
- Reduces memory overhead for kmalloc array
- Large kmalloc operations are faster since they do not
need to pass through the slab allocator to get to the
page allocator.
- Performance increase of 10%-20% on alloc and 50% on free for
PAGE_SIZEd allocations.
SLUB must call page allocator for each alloc anyways since
the higher order pages which that allowed avoiding the page alloc calls
are not available in a reliable way anymore. So we are basically removing
useless slab allocator overhead.
- Large kmallocs yields page aligned object which is what
SLAB did. Bad things like using page sized kmalloc allocations to
stand in for page allocate allocs can be transparently handled and are not
distinguishable from page allocator uses.
- Checking for too large objects can be removed since
it is done by the page allocator.
Drawbacks:
- No accounting for large kmalloc slab allocations anymore
- No debugging of large kmalloc slab allocations.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the size limit max_sectors_kb imposed on max_readahead_kb.
The size restriction is unreasonable. Especially when max_sectors_kb cannot
grow larger than max_hw_sectors_kb, which can be rather small for some disk
drives.
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Acked-by: Jens Axboe <jens.axboe@oracle.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The local copy of ra in do_generic_mapping_read() can now go away.
It predates readanead(req_size). In a time when the readahead code was called
on *every* single page. Hence a local has to be made to reduce the chance of
the readahead state being overwritten by a concurrent reader. More details
in: Linux: Random File I/O Regressions In 2.6
<http://kerneltrap.org/node/3039>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a simplified version of the pagecache context based readahead. It
handles the case of multiple threads reading on the same fd and invalidating
each others' readahead state. It does the trick by scanning the pagecache and
recovering the current read stream's readahead status.
The algorithm works in a opportunistic way, in that it does not try to detect
interleaved reads _actively_, which requires a probe into the page cache
(which means a little more overhead for random reads). It only tries to
handle a previously started sequential readahead whose state was overwritten
by another concurrent stream, and it can do this job pretty well.
Negative and positive examples(or what you can expect from it):
1) it cannot detect and serve perfect request-by-request interleaved reads
right:
time stream 1 stream 2
0 1
1 1001
2 2
3 1002
4 3
5 1003
6 4
7 1004
8 5
9 1005
Here no single readahead will be carried out.
2) However, if it's two concurrent reads by two threads, the chance of the
initial sequential readahead be started is huge. Once the first sequential
readahead is started for a stream, this patch will ensure that the readahead
window continues to rampup and won't be disturbed by other streams.
time stream 1 stream 2
0 1
1 2
2 1001
3 3
4 1002
5 1003
6 4
7 5
8 1004
9 6
10 1005
11 7
12 1006
13 1007
Here stream 1 will start a readahead at page 2, and stream 2 will start its
first readahead at page 1003. From then on the two streams will be served
right.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce radix_tree_next_hole(root, index, max_scan) to scan radix tree for
the first hole. It will be used in interleaved readahead.
The implementation is dumb and obviously correct. It can help debug(and
document) the possible smart one in future.
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Combine the file_ra_state members
unsigned long prev_index
unsigned int prev_offset
into
loff_t prev_pos
It is more consistent and better supports huge files.
Thanks to Peter for the nice proposal!
[akpm@linux-foundation.org: fix shift overflow]
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fold file_ra_state.mmap_hit into file_ra_state.mmap_miss and make it an int.
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use 'unsigned int' instead of 'unsigned long' for readahead sizes.
This helps reduce memory consumption on 64bit CPU when a lot of files are
opened.
CC: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch cleans up duplicate includes in
mm/
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch cleans up duplicate includes in
include/linux/memory_hotplug.h
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Acked-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have had complaints where a threaded application is left in a bad state
after one of it's threads is killed when we hit a VM: out_of_memory
condition.
Killing just one of the process threads can leave the application in a bad
state, whereas killing the entire process group would allow for the
application to restart, or be otherwise handled, and makes it very obvious
that something has gone wrong.
This change allows the entire process group to be taken down, rather
than just the one thread.
Signed-off-by: Will Schmidt <will_schmidt@vnet.ibm.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enable virtual memmap support for SPARSEMEM on PPC64 systems. Slice a 16th
off the end of the linear mapping space and use that to hold the vmemmap.
Uses the same size mapping as uses in the linear 1:1 kernel mapping.
[pbadari@gmail.com: fix warning]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Equip IA64 sparsemem with a virtual memmap. This is similar to the existing
CONFIG_VIRTUAL_MEM_MAP functionality for DISCONTIGMEM. It uses a PAGE_SIZE
mapping.
This is provided as a minimally intrusive solution. We split the 128TB
VMALLOC area into two 64TB areas and use one for the virtual memmap.
This should replace CONFIG_VIRTUAL_MEM_MAP long term.
[apw@shadowen.org: convert to new helper based initialisation]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86_64 uses 2M page table entries to map its 1-1 kernel space. We also
implement the virtual memmap using 2M page table entries. So there is no
additional runtime overhead over FLATMEM, initialisation is slightly more
complex. As FLATMEM still references memory to obtain the mem_map pointer and
SPARSEMEM_VMEMMAP uses a compile time constant, SPARSEMEM_VMEMMAP should be
superior.
With this SPARSEMEM becomes the most efficient way of handling virt_to_page,
pfn_to_page and friends for UP, SMP and NUMA on x86_64.
[apw@shadowen.org: code resplit, style fixups]
[apw@shadowen.org: vmemmap x86_64: ensure end of section memmap is initialised]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert the common vmemmap population into initialisation helpers for use by
architecture vmemmap populators. All architecture implementing the
SPARSEMEM_VMEMMAP variant supply an architecture specific vmemmap_populate()
initialiser, which may make use of the helpers.
This allows us to clean up and remove the initialisation Kconfig entries.
With this patch there is a single SPARSEMEM_VMEMMAP_ENABLE Kconfig option to
indicate use of that variant.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all
the arches. It would be great if it could be the default so that we can get
rid of various forms of DISCONTIG and other variations on memory maps. So far
what has hindered this are the additional lookups that SPARSEMEM introduces
for virt_to_page and page_address. This goes so far that the code to do this
has to be kept in a separate function and cannot be used inline.
This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap
is mapped into a virtually contigious area, only the active sections are
physically backed. This allows virt_to_page page_address and cohorts become
simple shift/add operations. No page flag fields, no table lookups, nothing
involving memory is required.
The two key operations pfn_to_page and page_to_page become:
#define __pfn_to_page(pfn) (vmemmap + (pfn))
#define __page_to_pfn(page) ((page) - vmemmap)
By having a virtual mapping for the memmap we allow simple access without
wasting physical memory. As kernel memory is typically already mapped 1:1
this introduces no additional overhead. The virtual mapping must be big
enough to allow a struct page to be allocated and mapped for all valid
physical pages. This vill make a virtual memmap difficult to use on 32 bit
platforms that support 36 address bits.
However, if there is enough virtual space available and the arch already maps
its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this
technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM.
FLATMEM needs to read the contents of the mem_map variable to get the start of
the memmap and then add the offset to the required entry. vmemmap is a
constant to which we can simply add the offset.
This patch has the potential to allow us to make SPARSMEM the default (and
even the only) option for most systems. It should be optimal on UP, SMP and
NUMA on most platforms. Then we may even be able to remove the other memory
models: FLATMEM, DISCONTIG etc.
[apw@shadowen.org: config cleanups, resplit code etc]
[kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init]
[apw@shadowen.org: vmemmap: remove excess debugging]
[apw@shadowen.org: simplify initialisation code and reduce duplication]
[apw@shadowen.org: pull out the vmemmap code into its own file]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have flags to indicate whether a section actually has a valid mem_map
associated with it. This is never set and we rely solely on the present bit
to indicate a section is valid. By definition a section is not valid if it
has no mem_map and there is a window during init where the present bit is set
but there is no mem_map, during which pfn_valid() will return true
incorrectly.
Use the existing SECTION_HAS_MEM_MAP flag to indicate the presence of a valid
mem_map. Switch valid_section{,_nr} and pfn_valid() to this bit. Add a new
present_section{,_nr} and pfn_present() interfaces for those users who care to
know that a section is going to be valid.
[akpm@linux-foundation.org: coding-syle fixes]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all
the arches. It would be great if it could be the default so that we can get
rid of various forms of DISCONTIG and other variations on memory maps. So far
what has hindered this are the additional lookups that SPARSEMEM introduces
for virt_to_page and page_address. This goes so far that the code to do this
has to be kept in a separate function and cannot be used inline.
This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap
is mapped into a virtually contigious area, only the active sections are
physically backed. This allows virt_to_page page_address and cohorts become
simple shift/add operations. No page flag fields, no table lookups, nothing
involving memory is required.
The two key operations pfn_to_page and page_to_page become:
#define __pfn_to_page(pfn) (vmemmap + (pfn))
#define __page_to_pfn(page) ((page) - vmemmap)
By having a virtual mapping for the memmap we allow simple access without
wasting physical memory. As kernel memory is typically already mapped 1:1
this introduces no additional overhead. The virtual mapping must be big
enough to allow a struct page to be allocated and mapped for all valid
physical pages. This vill make a virtual memmap difficult to use on 32 bit
platforms that support 36 address bits.
However, if there is enough virtual space available and the arch already maps
its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this
technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM.
FLATMEM needs to read the contents of the mem_map variable to get the start of
the memmap and then add the offset to the required entry. vmemmap is a
constant to which we can simply add the offset.
This patch has the potential to allow us to make SPARSMEM the default (and
even the only) option for most systems. It should be optimal on UP, SMP and
NUMA on most platforms. Then we may even be able to remove the other memory
models: FLATMEM, DISCONTIG etc.
The current aim is to bring a common virtually mapped mem_map to all
architectures. This should facilitate the removal of the bespoke
implementations from the architectures. This also brings performance
improvements for most architecture making sparsmem vmemmap the more desirable
memory model. The ultimate aim of this work is to expand sparsemem support to
encompass all the features of the other memory models. This could allow us to
drop support for and remove the other models in the longer term.
Below are some comparitive kernbench numbers for various architectures,
comparing default memory model against SPARSEMEM VMEMMAP. All but ia64 show
marginal improvement; we expect the ia64 figures to be sorted out when the
larger mapping support returns.
x86-64 non-NUMA
Base VMEMAP % change (-ve good)
User 85.07 84.84 -0.26
System 34.32 33.84 -1.39
Total 119.38 118.68 -0.59
ia64
Base VMEMAP % change (-ve good)
User 1016.41 1016.93 0.05
System 50.83 51.02 0.36
Total 1067.25 1067.95 0.07
x86-64 NUMA
Base VMEMAP % change (-ve good)
User 30.77 431.73 0.22
System 45.39 43.98 -3.11
Total 476.17 475.71 -0.10
ppc64
Base VMEMAP % change (-ve good)
User 488.77 488.35 -0.09
System 56.92 56.37 -0.97
Total 545.69 544.72 -0.18
Below are some AIM bencharks on IA64 and x86-64 (thank Bob). The seems
pretty much flat as you would expect.
ia64 results 2 cpu non-numa 4Gb SCSI disk
Benchmark Version Machine Run Date
AIM Multiuser Benchmark - Suite VII "1.1" extreme Jun 1 07:17:24 2007
Tasks Jobs/Min JTI Real CPU Jobs/sec/task
1 98.9 100 58.9 1.3 1.6482
101 5547.1 95 106.0 79.4 0.9154
201 6377.7 95 183.4 158.3 0.5288
301 6932.2 95 252.7 237.3 0.3838
401 7075.8 93 329.8 316.7 0.2941
501 7235.6 94 403.0 396.2 0.2407
600 7387.5 94 472.7 475.0 0.2052
Benchmark Version Machine Run Date
AIM Multiuser Benchmark - Suite VII "1.1" vmemmap Jun 1 09:59:04 2007
Tasks Jobs/Min JTI Real CPU Jobs/sec/task
1 99.1 100 58.8 1.2 1.6509
101 5480.9 95 107.2 79.2 0.9044
201 6490.3 95 180.2 157.8 0.5382
301 6886.6 94 254.4 236.8 0.3813
401 7078.2 94 329.7 316.0 0.2942
501 7250.3 95 402.2 395.4 0.2412
600 7399.1 94 471.9 473.9 0.2055
open power 710 2 cpu, 4 Gb, SCSI and configured physically
Benchmark Version Machine Run Date
AIM Multiuser Benchmark - Suite VII "1.1" extreme May 29 15:42:53 2007
Tasks Jobs/Min JTI Real CPU Jobs/sec/task
1 25.7 100 226.3 4.3 0.4286
101 1096.0 97 536.4 199.8 0.1809
201 1236.4 96 946.1 389.1 0.1025
301 1280.5 96 1368.0 582.3 0.0709
401 1270.2 95 1837.4 771.0 0.0528
501 1251.4 96 2330.1 955.9 0.0416
601 1252.6 96 2792.4 1139.2 0.0347
701 1245.2 96 3276.5 1334.6 0.0296
918 1229.5 96 4345.4 1728.7 0.0223
Benchmark Version Machine Run Date
AIM Multiuser Benchmark - Suite VII "1.1" vmemmap May 30 07:28:26 2007
Tasks Jobs/Min JTI Real CPU Jobs/sec/task
1 25.6 100 226.9 4.3 0.4275
101 1049.3 97 560.2 198.1 0.1731
201 1199.1 97 975.6 390.7 0.0994
301 1261.7 96 1388.5 591.5 0.0699
401 1256.1 96 1858.1 771.9 0.0522
501 1220.1 96 2389.7 955.3 0.0406
601 1224.6 96 2856.3 1133.4 0.0340
701 1252.0 96 3258.7 1314.1 0.0298
915 1232.8 96 4319.7 1704.0 0.0225
amd64 2 2-core, 4Gb and SATA
Benchmark Version Machine Run Date
AIM Multiuser Benchmark - Suite VII "1.1" extreme Jun 2 03:59:48 2007
Tasks Jobs/Min JTI Real CPU Jobs/sec/task
1 13.0 100 446.4 2.1 0.2173
101 533.4 97 1102.0 110.2 0.0880
201 578.3 97 2022.8 220.8 0.0480
301 583.8 97 3000.6 332.3 0.0323
401 580.5 97 4020.1 442.2 0.0241
501 574.8 98 5072.8 558.8 0.0191
600 566.5 98 6163.8 671.0 0.0157
Benchmark Version Machine Run Date
AIM Multiuser Benchmark - Suite VII "1.1" vmemmap Jun 3 04:19:31 2007
Tasks Jobs/Min JTI Real CPU Jobs/sec/task
1 13.0 100 447.8 2.0 0.2166
101 536.5 97 1095.6 109.7 0.0885
201 567.7 97 2060.5 219.3 0.0471
301 582.1 96 3009.4 330.2 0.0322
401 578.2 96 4036.4 442.4 0.0240
501 585.1 98 4983.2 555.1 0.0195
600 565.5 98 6175.2 660.6 0.0157
This patch:
Fix some spelling errors.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86(-64) are the last architectures still using the page fault notifier
cruft for the kprobes page fault hook. This patch converts them to the
proper direct calls, and removes the now unused pagefault notifier bits
aswell as the cruft in kprobes.c that was related to this mess.
I know Andi didn't really like this, but all other architecture maintainers
agreed the direct calls are much better and besides the obvious cruft
removal a common way of dealing with kprobes across architectures is
important aswell.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix sparc64]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Andi Kleen <ak@suse.de>
Cc: <linux-arch@vger.kernel.org>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert cpu_sibling_map from a static array sized by NR_CPUS to a per_cpu
variable. This saves sizeof(cpumask_t) * NR unused cpus. Access is mostly
from startup and CPU HOTPLUG functions.
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is from an earlier message from 'Christoph Lameter':
cpu_core_map is currently an array defined using NR_CPUS. This means that
we overallocate since we will rarely really use maximum configured cpu.
If we put the cpu_core_map into the per cpu area then it will be allocated
for each processor as it comes online.
This means that the core map cannot be accessed until the per cpu area
has been allocated. Xen does a weird thing here looping over all processors
and zeroing the masks that are not yet allocated and that will be zeroed
when they are allocated. I commented the code out.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Notebook manufacturer seems to built a newer Wacom pen enabled tablet to
recent tablet pcs which are not recognized by the serial pnp driver.
Attached is a patch which makes the newer Wacom WACF007 and WACF008 tablets
useable with the serial driver. The device is fully compatible with it.
Signed-off-by: Maik Broemme <mbroemme@plusserver.de>
Cc: Andrey Panin <pazke@orbita1.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The UPF_FIXED_PORT flags was introduced in 2.6.22 and it can be used
instead of the driver specific verify_port routine.
Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enable wakeup from serial ports, make it run-time configurable over sysfs,
e.g.,
echo enabled > /sys/devices/platform/serial8250.0/tty/ttyS0/power/wakeup
Requires
# CONFIG_SYSFS_DEPRECATED is not set
Following suggestions from Alan and Russell moved the may_wake_up checks
to serial_core.c. This time actually tested - it does even work. Could
someone, please, verify, that put_device after device_find_child is
correct?
Also would be nice to test with a Natsemi UART, that can wake up the system,
if such systems exist.
For this you just have to apply the patch below, issue the above "echo"
command to one of your Natsemi port, suspend and resume your system, and
verify that your Natsemi port still works. If you are actually capable of
waking up the system from that port, would be nice to test that as well.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide {enable,disable}_irq_wakeup dummies for undefined
cross-compilers for platforms without CONFIG_GENERIC_IRQ.
Needed by wake-up-from-a-serial-port.patch
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for a whole range of boards. Some are partly autodetected but
not fully correctly others (PCI Express notably) not at all. Stick all
the right entries in.
Thanks to Mainpine for information and testing.
Signed-off-by: Alan Cox <alan@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do not include some header files already indluded by serial_core.h.
Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Cc: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most non cardbus devices can't do dma, so flag them as such in the device
creation routine.
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Natalie Protasevich <protasnb@gmail.com>
Cc: Jeff Garzik <jgarzik@pobox.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some devices are incapable of DMA and need to be recognised as such.
Introduce a NONE dma mask to facilitate this plus an inline function:
is_device_dma_capable() to check this.
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Natalie Protasevich <protasnb@gmail.com>
Cc: Jeff Garzik <jgarzik@pobox.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for Sierra Wireless AC850 which has the same Ids as the
AC710/750 but has a different firmware.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on a patch by Haavard Skinnemoen posted to linux-pcmcia, but using
static inlines for readability reasons. this should fix PCMCIA an AVR32
Signed-off-by: Daniel Ritz <daniel.ritz@gmx.ch>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only a few definitions is in xxs1500.h .
They can be move to au1000_xxs1500.c .
[m.kozlowski@tuxland.pl: fix unbalanced parenthesis]
Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently I've been trying to get working PCMCIA interface on H5000 ipaq
series, using dual PCMCIA sleeve. So far things work correctly, but I had
to do one modification to drivers/pcmcia/pxa2xx_base.c to get the interface
working with orinoco gold PCMCIA card (wired pcnet_cs ethernet card worked
even without this modification).
The issue has something to do with assert time on PCMCIA bus, but I'm not
really sure what -- I found the working value just by trial&error approach.
I'm not sure how is the assert value in pxa2xx_mcxx_asst calculated (I
know, simple formula, but the reason why is it calculated that way is not
obvious for me), neither that my modification is correct. It just works
with iPAQ.
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use menuconfigs instead of menus, so the whole menu can be disabled at once
instead of going through all options.
Signed-off-by: Jan Engelhardt <jengelh@gmx.de>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I need __INIT_REFOK to fix a MODPOST warning for a few MIPS configs which
have to call init code from .text very early in the game due to bootloader
issues. __INITDATA_REFOK is just for consistency.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Optionally add a boot delay after each kernel printk() call, crudely
measured in milliseconds, with a maximum delay of 10 seconds per printk.
Enable CONFIG_BOOT_PRINTK_DELAY=y and then add (e.g.):
"lpj=loops_per_jiffy boot_delay=100"
to the kernel command line.
It has been useful in cases like "during boot, my machine just reboots or the
screen goes black" by slowing down printk, (and adding initcall_debug), we can
usually see the last thing that happened before the lights went out which is
usually a valuable clue.
[akpm@linux-foundation.org: not all architectures implement CONFIG_HZ]
[akpm@linux-foundation.org: fix lots of stuff]
[bunk@stusta.de: kernel/printk.c: make 2 variables static]
[heiko.carstens@de.ibm.com: fix slow down printk on boot compile error]
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Identical handlers of PTRACE_DETACH go into ptrace_request().
Not touching compat code.
Not touching archs that don't call ptrace_request.
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix filesystems docbook warnings.
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'name'
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'mode'
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'parent'
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'value'
Warning(linux-2.6.23-git8//include/linux/jbd.h:404): No description found for parameter 'h_lockdep_map'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix USB docbook warnings.
Warning(linux-2.6.23-git8//include/linux/usb/gadget.h:487): No description found for parameter 'g'
Warning(linux-2.6.23-git8//include/linux/usb/gadget.h:506): No description found for parameter 'g'
Warning(linux-2.6.23-git8//drivers/usb/core/hub.c:1416): No description found for parameter 'usb_dev'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix libata docbook warnings.
Warning(linux-2.6.23-git8//drivers/ata/libata-scsi.c:3251): No description found for parameter 'dev'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-api docbook warnings.
Warning(linux-2.6.23-git8//drivers/message/fusion/mptscsih.c:2618): No description found for parameter 'sc'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (95 commits)
[ARM] 4578/1: CM-x270: PCMCIA support
[ARM] 4577/1: ITE 8152 PCI bridge support
[ARM] 4576/1: CM-X270 machine support
[ARM] pxa: Avoid pxa_gpio_mode() in gpio_direction_{in,out}put()
[ARM] pxa: move pxa_set_mode() from pxa2xx_mainstone.c to mainstone.c
[ARM] pxa: move pxa_set_mode() from pxa2xx_lubbock.c to lubbock.c
[ARM] pxa: Make cpu_is_pxaXXX dependent on configuration symbols
[ARM] pxa: PXA3xx base support
[NET] smc91x: fix PXA DMA support code
[SERIAL] Fix console initialisation ordering
[ARM] pxa: tidy up arch/arm/mach-pxa/Makefile
[ARM] Update arch/arm/Kconfig for drivers/Kconfig changes
[ARM] 4600/1: fix kernel build failure with build-id-supporting binutils
[ARM] 4599/1: Preserve ATAG list for use with kexec (2.6.23)
[ARM] Rename consistent_sync() as dma_cache_maint()
[ARM] 4572/1: ep93xx: add cirrus logic edb9307 support
[ARM] 4596/1: S3C2412: Correct IRQs for SDI+CF and add decoding support
[ARM] 4595/1: ns9xxx: define registers as void __iomem * instead of volatile u32
[ARM] 4594/1: ns9xxx: use the new gpio functions
[ARM] 4593/1: ns9xxx: implement generic clockevents
...
* 'locks' of git://linux-nfs.org/~bfields/linux:
nfsd: remove IS_ISMNDLCK macro
Rework /proc/locks via seq_files and seq_list helpers
fs/locks.c: use list_for_each_entry() instead of list_for_each()
NFS: clean up explicit check for mandatory locks
AFS: clean up explicit check for mandatory locks
9PFS: clean up explicit check for mandatory locks
GFS2: clean up explicit check for mandatory locks
Cleanup macros for distinguishing mandatory locks
Documentation: move locks.txt in filesystems/
locks: add warning about mandatory locking races
Documentation: move mandatory locking documentation to filesystems/
locks: Fix potential OOPS in generic_setlease()
Use list_first_entry in locks_wake_up_blocks
locks: fix flock_lock_file() comment
Memory shortage can result in inconsistent flocks state
locks: kill redundant local variable
locks: reverse order of posix_locks_conflict() arguments