android_kernel_xiaomi_sm8350/drivers/firmware/qcom/tz_log.c
Gaurav Kashyap 0ed0ca2840 tz_log: update TZ version for enlarged buf
Update the TZ version to include the latest diag version
when choosing to use enlarged buffers.

Change-Id: Icd285c171957d0ddf6d4e9980bae33fa7b5eb9ec
Signed-off-by: Gaurav Kashyap <gaurkash@codeaurora.org>
2021-07-20 21:05:39 +05:30

1645 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/debugfs.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/msm_ion.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/of.h>
#include <linux/dma-buf.h>
#include <linux/qcom_scm.h>
#include <soc/qcom/qseecomi.h>
#include <linux/qtee_shmbridge.h>
/* QSEE_LOG_BUF_SIZE = 32K */
#define QSEE_LOG_BUF_SIZE 0x8000
/* enlarged qsee log buf size is 128K by default */
#define QSEE_LOG_BUF_SIZE_V2 0x20000
/* TZ Diagnostic Area legacy version number */
#define TZBSP_DIAG_MAJOR_VERSION_LEGACY 2
/* TZ Diagnostic Area version number */
#define TZBSP_FVER_MAJOR_MINOR_MASK 0x3FF /* 10 bits */
#define TZBSP_FVER_MAJOR_SHIFT 22
#define TZBSP_FVER_MINOR_SHIFT 12
#define TZBSP_DIAG_MAJOR_VERSION_V9 9
#define TZBSP_DIAG_MINOR_VERSION_V2 2
#define TZBSP_DIAG_MINOR_VERSION_V21 3
#define TZBSP_DIAG_MINOR_VERSION_V22 4
/* TZ Diag Feature Version Id */
#define QCOM_SCM_FEAT_DIAG_ID 0x06
/*
* Preprocessor Definitions and Constants
*/
#define TZBSP_MAX_CPU_COUNT 0x08
/*
* Number of VMID Tables
*/
#define TZBSP_DIAG_NUM_OF_VMID 16
/*
* VMID Description length
*/
#define TZBSP_DIAG_VMID_DESC_LEN 7
/*
* Number of Interrupts
*/
#define TZBSP_DIAG_INT_NUM 32
/*
* Length of descriptive name associated with Interrupt
*/
#define TZBSP_MAX_INT_DESC 16
/*
* TZ 3.X version info
*/
#define QSEE_VERSION_TZ_3_X 0x800000
/*
* TZ 4.X version info
*/
#define QSEE_VERSION_TZ_4_X 0x1000000
#define TZBSP_AES_256_ENCRYPTED_KEY_SIZE 256
#define TZBSP_NONCE_LEN 12
#define TZBSP_TAG_LEN 16
#define ENCRYPTED_TZ_LOG_ID 0
#define ENCRYPTED_QSEE_LOG_ID 1
/*
* VMID Table
*/
struct tzdbg_vmid_t {
uint8_t vmid; /* Virtual Machine Identifier */
uint8_t desc[TZBSP_DIAG_VMID_DESC_LEN]; /* ASCII Text */
};
/*
* Boot Info Table
*/
struct tzdbg_boot_info_t {
uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */
uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */
uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */
uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */
uint32_t warm_jmp_addr; /* Last Warmboot Jump Address */
uint32_t spare; /* Reserved for future use. */
};
/*
* Boot Info Table for 64-bit
*/
struct tzdbg_boot_info64_t {
uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */
uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */
uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */
uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */
uint32_t psci_entry_cnt;/* PSCI syscall entry CPU Counter */
uint32_t psci_exit_cnt; /* PSCI syscall exit CPU Counter */
uint64_t warm_jmp_addr; /* Last Warmboot Jump Address */
uint32_t warm_jmp_instr; /* Last Warmboot Jump Address Instruction */
};
/*
* Reset Info Table
*/
struct tzdbg_reset_info_t {
uint32_t reset_type; /* Reset Reason */
uint32_t reset_cnt; /* Number of resets occurred/CPU */
};
/*
* Interrupt Info Table
*/
struct tzdbg_int_t {
/*
* Type of Interrupt/exception
*/
uint16_t int_info;
/*
* Availability of the slot
*/
uint8_t avail;
/*
* Reserved for future use
*/
uint8_t spare;
/*
* Interrupt # for IRQ and FIQ
*/
uint32_t int_num;
/*
* ASCII text describing type of interrupt e.g:
* Secure Timer, EBI XPU. This string is always null terminated,
* supporting at most TZBSP_MAX_INT_DESC characters.
* Any additional characters are truncated.
*/
uint8_t int_desc[TZBSP_MAX_INT_DESC];
uint64_t int_count[TZBSP_MAX_CPU_COUNT]; /* # of times seen per CPU */
};
/*
* Interrupt Info Table used in tz version >=4.X
*/
struct tzdbg_int_t_tz40 {
uint16_t int_info;
uint8_t avail;
uint8_t spare;
uint32_t int_num;
uint8_t int_desc[TZBSP_MAX_INT_DESC];
uint32_t int_count[TZBSP_MAX_CPU_COUNT]; /* uint32_t in TZ ver >= 4.x*/
};
/* warm boot reason for cores */
struct tzbsp_diag_wakeup_info_t {
/* Wake source info : APCS_GICC_HPPIR */
uint32_t HPPIR;
/* Wake source info : APCS_GICC_AHPPIR */
uint32_t AHPPIR;
};
/*
* Log ring buffer position
*/
struct tzdbg_log_pos_t {
uint16_t wrap;
uint16_t offset;
};
struct tzdbg_log_pos_v2_t {
uint32_t wrap;
uint32_t offset;
};
/*
* Log ring buffer
*/
struct tzdbg_log_t {
struct tzdbg_log_pos_t log_pos;
/* open ended array to the end of the 4K IMEM buffer */
uint8_t log_buf[];
};
struct tzdbg_log_v2_t {
struct tzdbg_log_pos_v2_t log_pos;
/* open ended array to the end of the 4K IMEM buffer */
uint8_t log_buf[];
};
struct tzbsp_encr_info_for_log_chunk_t {
uint32_t size_to_encr;
uint8_t nonce[TZBSP_NONCE_LEN];
uint8_t tag[TZBSP_TAG_LEN];
};
/*
* Only `ENTIRE_LOG` will be used unless the
* "OEM_tz_num_of_diag_log_chunks_to_encr" devcfg field >= 2.
* If this is true, the diag log will be encrypted in two
* separate chunks: a smaller chunk containing only error
* fatal logs and a bigger "rest of the log" chunk. In this
* case, `ERR_FATAL_LOG_CHUNK` and `BIG_LOG_CHUNK` will be
* used instead of `ENTIRE_LOG`.
*/
enum tzbsp_encr_info_for_log_chunks_idx_t {
BIG_LOG_CHUNK = 0,
ENTIRE_LOG = 1,
ERR_FATAL_LOG_CHUNK = 1,
MAX_NUM_OF_CHUNKS,
};
struct tzbsp_encr_info_t {
uint32_t num_of_chunks;
struct tzbsp_encr_info_for_log_chunk_t chunks[MAX_NUM_OF_CHUNKS];
uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE];
};
/*
* Diagnostic Table
* Note: This is the reference data structure for tz diagnostic table
* supporting TZBSP_MAX_CPU_COUNT, the real diagnostic data is directly
* copied into buffer from i/o memory.
*/
struct tzdbg_t {
uint32_t magic_num;
uint32_t version;
/*
* Number of CPU's
*/
uint32_t cpu_count;
/*
* Offset of VMID Table
*/
uint32_t vmid_info_off;
/*
* Offset of Boot Table
*/
uint32_t boot_info_off;
/*
* Offset of Reset info Table
*/
uint32_t reset_info_off;
/*
* Offset of Interrupt info Table
*/
uint32_t int_info_off;
/*
* Ring Buffer Offset
*/
uint32_t ring_off;
/*
* Ring Buffer Length
*/
uint32_t ring_len;
/* Offset for Wakeup info */
uint32_t wakeup_info_off;
union {
/* The elements in below structure have to be used for TZ where
* diag version = TZBSP_DIAG_MINOR_VERSION_V2
*/
struct {
/*
* VMID to EE Mapping
*/
struct tzdbg_vmid_t vmid_info[TZBSP_DIAG_NUM_OF_VMID];
/*
* Boot Info
*/
struct tzdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT];
/*
* Reset Info
*/
struct tzdbg_reset_info_t reset_info[TZBSP_MAX_CPU_COUNT];
uint32_t num_interrupts;
struct tzdbg_int_t int_info[TZBSP_DIAG_INT_NUM];
/* Wake up info */
struct tzbsp_diag_wakeup_info_t wakeup_info[TZBSP_MAX_CPU_COUNT];
uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE];
uint8_t nonce[TZBSP_NONCE_LEN];
uint8_t tag[TZBSP_TAG_LEN];
};
/* The elements in below structure have to be used for TZ where
* diag version = TZBSP_DIAG_MINOR_VERSION_V21
*/
struct {
uint32_t encr_info_for_log_off;
/*
* VMID to EE Mapping
*/
struct tzdbg_vmid_t vmid_info_v2[TZBSP_DIAG_NUM_OF_VMID];
/*
* Boot Info
*/
struct tzdbg_boot_info_t boot_info_v2[TZBSP_MAX_CPU_COUNT];
/*
* Reset Info
*/
struct tzdbg_reset_info_t reset_info_v2[TZBSP_MAX_CPU_COUNT];
uint32_t num_interrupts_v2;
struct tzdbg_int_t int_info_v2[TZBSP_DIAG_INT_NUM];
/* Wake up info */
struct tzbsp_diag_wakeup_info_t wakeup_info_v2[TZBSP_MAX_CPU_COUNT];
struct tzbsp_encr_info_t encr_info_for_log;
};
};
/*
* We need at least 2K for the ring buffer
*/
struct tzdbg_log_t ring_buffer; /* TZ Ring Buffer */
};
struct hypdbg_log_pos_t {
uint16_t wrap;
uint16_t offset;
};
struct hypdbg_boot_info_t {
uint32_t warm_entry_cnt;
uint32_t warm_exit_cnt;
};
struct hypdbg_t {
/* Magic Number */
uint32_t magic_num;
/* Number of CPU's */
uint32_t cpu_count;
/* Ring Buffer Offset */
uint32_t ring_off;
/* Ring buffer position mgmt */
struct hypdbg_log_pos_t log_pos;
uint32_t log_len;
/* S2 fault numbers */
uint32_t s2_fault_counter;
/* Boot Info */
struct hypdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT];
/* Ring buffer pointer */
uint8_t log_buf_p[];
};
/*
* Enumeration order for VMID's
*/
enum tzdbg_stats_type {
TZDBG_BOOT = 0,
TZDBG_RESET,
TZDBG_INTERRUPT,
TZDBG_VMID,
TZDBG_GENERAL,
TZDBG_LOG,
TZDBG_QSEE_LOG,
TZDBG_HYP_GENERAL,
TZDBG_HYP_LOG,
TZDBG_STATS_MAX
};
struct tzdbg_stat {
size_t display_len;
size_t display_offset;
char *name;
char *data;
};
struct tzdbg {
void __iomem *virt_iobase;
void __iomem *hyp_virt_iobase;
struct tzdbg_t *diag_buf;
struct hypdbg_t *hyp_diag_buf;
char *disp_buf;
int debug_tz[TZDBG_STATS_MAX];
struct tzdbg_stat stat[TZDBG_STATS_MAX];
uint32_t hyp_debug_rw_buf_size;
bool is_hyplog_enabled;
uint32_t tz_version;
bool is_encrypted_log_enabled;
bool is_enlarged_buf;
};
struct tzbsp_encr_log_t {
/* Magic Number */
uint32_t magic_num;
/* version NUMBER */
uint32_t version;
/* encrypted log size */
uint32_t encr_log_buff_size;
/* Wrap value*/
uint16_t wrap_count;
/* AES encryption key wrapped up with oem public key*/
uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE];
/* Nonce used for encryption*/
uint8_t nonce[TZBSP_NONCE_LEN];
/* Tag to be used for Validation */
uint8_t tag[TZBSP_TAG_LEN];
/* Encrypted log buffer */
uint8_t log_buf[1];
};
struct encrypted_log_info {
phys_addr_t paddr;
void *vaddr;
size_t size;
uint64_t shmb_handle;
};
static struct tzdbg tzdbg = {
.stat[TZDBG_BOOT].name = "boot",
.stat[TZDBG_RESET].name = "reset",
.stat[TZDBG_INTERRUPT].name = "interrupt",
.stat[TZDBG_VMID].name = "vmid",
.stat[TZDBG_GENERAL].name = "general",
.stat[TZDBG_LOG].name = "log",
.stat[TZDBG_QSEE_LOG].name = "qsee_log",
.stat[TZDBG_HYP_GENERAL].name = "hyp_general",
.stat[TZDBG_HYP_LOG].name = "hyp_log",
};
static struct tzdbg_log_t *g_qsee_log;
static struct tzdbg_log_v2_t *g_qsee_log_v2;
static dma_addr_t coh_pmem;
static uint32_t debug_rw_buf_size;
static uint32_t display_buf_size;
static uint32_t qseelog_buf_size;
static phys_addr_t disp_buf_paddr;
static uint64_t qseelog_shmbridge_handle;
static struct encrypted_log_info enc_qseelog_info;
static struct encrypted_log_info enc_tzlog_info;
/*
* Debugfs data structure and functions
*/
static int _disp_tz_general_stats(void)
{
int len = 0;
len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1,
" Version : 0x%x\n"
" Magic Number : 0x%x\n"
" Number of CPU : %d\n",
tzdbg.diag_buf->version,
tzdbg.diag_buf->magic_num,
tzdbg.diag_buf->cpu_count);
tzdbg.stat[TZDBG_GENERAL].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_vmid_stats(void)
{
int i, num_vmid;
int len = 0;
struct tzdbg_vmid_t *ptr;
ptr = (struct tzdbg_vmid_t *)((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->vmid_info_off);
num_vmid = ((tzdbg.diag_buf->boot_info_off -
tzdbg.diag_buf->vmid_info_off)/
(sizeof(struct tzdbg_vmid_t)));
for (i = 0; i < num_vmid; i++) {
if (ptr->vmid < 0xFF) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" 0x%x %s\n",
(uint32_t)ptr->vmid, (uint8_t *)ptr->desc);
}
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
tzdbg.stat[TZDBG_VMID].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_boot_stats(void)
{
int i;
int len = 0;
struct tzdbg_boot_info_t *ptr = NULL;
struct tzdbg_boot_info64_t *ptr_64 = NULL;
pr_info("qsee_version = 0x%x\n", tzdbg.tz_version);
if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) {
ptr_64 = (struct tzdbg_boot_info64_t *)((unsigned char *)
tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off);
} else {
ptr = (struct tzdbg_boot_info_t *)((unsigned char *)
tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off);
}
for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) {
if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Warmboot jump address : 0x%llx\n"
" Warmboot entry CPU counter : 0x%x\n"
" Warmboot exit CPU counter : 0x%x\n"
" Power Collapse entry CPU counter : 0x%x\n"
" Power Collapse exit CPU counter : 0x%x\n"
" Psci entry CPU counter : 0x%x\n"
" Psci exit CPU counter : 0x%x\n"
" Warmboot Jump Address Instruction : 0x%x\n",
i, (uint64_t)ptr_64->warm_jmp_addr,
ptr_64->wb_entry_cnt,
ptr_64->wb_exit_cnt,
ptr_64->pc_entry_cnt,
ptr_64->pc_exit_cnt,
ptr_64->psci_entry_cnt,
ptr_64->psci_exit_cnt,
ptr_64->warm_jmp_instr);
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr_64++;
} else {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Warmboot jump address : 0x%x\n"
" Warmboot entry CPU counter: 0x%x\n"
" Warmboot exit CPU counter : 0x%x\n"
" Power Collapse entry CPU counter: 0x%x\n"
" Power Collapse exit CPU counter : 0x%x\n",
i, ptr->warm_jmp_addr,
ptr->wb_entry_cnt,
ptr->wb_exit_cnt,
ptr->pc_entry_cnt,
ptr->pc_exit_cnt);
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
}
tzdbg.stat[TZDBG_BOOT].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_reset_stats(void)
{
int i;
int len = 0;
struct tzdbg_reset_info_t *ptr;
ptr = (struct tzdbg_reset_info_t *)((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->reset_info_off);
for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Reset Type (reason) : 0x%x\n"
" Reset counter : 0x%x\n",
i, ptr->reset_type, ptr->reset_cnt);
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
tzdbg.stat[TZDBG_RESET].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_interrupt_stats(void)
{
int i, j;
int len = 0;
int *num_int;
void *ptr;
struct tzdbg_int_t *tzdbg_ptr;
struct tzdbg_int_t_tz40 *tzdbg_ptr_tz40;
num_int = (uint32_t *)((unsigned char *)tzdbg.diag_buf +
(tzdbg.diag_buf->int_info_off - sizeof(uint32_t)));
ptr = ((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->int_info_off);
pr_info("qsee_version = 0x%x\n", tzdbg.tz_version);
if (tzdbg.tz_version < QSEE_VERSION_TZ_4_X) {
tzdbg_ptr = ptr;
for (i = 0; i < (*num_int); i++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" Interrupt Number : 0x%x\n"
" Type of Interrupt : 0x%x\n"
" Description of interrupt : %s\n",
tzdbg_ptr->int_num,
(uint32_t)tzdbg_ptr->int_info,
(uint8_t *)tzdbg_ptr->int_desc);
for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" int_count on CPU # %d : %u\n",
(uint32_t)j,
(uint32_t)tzdbg_ptr->int_count[j]);
}
len += scnprintf(tzdbg.disp_buf + len,
debug_rw_buf_size - 1, "\n");
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into buf\n",
__func__);
break;
}
tzdbg_ptr++;
}
} else {
tzdbg_ptr_tz40 = ptr;
for (i = 0; i < (*num_int); i++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" Interrupt Number : 0x%x\n"
" Type of Interrupt : 0x%x\n"
" Description of interrupt : %s\n",
tzdbg_ptr_tz40->int_num,
(uint32_t)tzdbg_ptr_tz40->int_info,
(uint8_t *)tzdbg_ptr_tz40->int_desc);
for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) {
len += scnprintf(tzdbg.disp_buf + len,
(debug_rw_buf_size - 1) - len,
" int_count on CPU # %d : %u\n",
(uint32_t)j,
(uint32_t)tzdbg_ptr_tz40->int_count[j]);
}
len += scnprintf(tzdbg.disp_buf + len,
debug_rw_buf_size - 1, "\n");
if (len > (debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into buf\n",
__func__);
break;
}
tzdbg_ptr_tz40++;
}
}
tzdbg.stat[TZDBG_INTERRUPT].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_log_stats_legacy(void)
{
int len = 0;
unsigned char *ptr;
ptr = (unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->ring_off;
len += scnprintf(tzdbg.disp_buf, (debug_rw_buf_size - 1) - len,
"%s\n", ptr);
tzdbg.stat[TZDBG_LOG].data = tzdbg.disp_buf;
return len;
}
static int _disp_log_stats(struct tzdbg_log_t *log,
struct tzdbg_log_pos_t *log_start, uint32_t log_len,
size_t count, uint32_t buf_idx)
{
uint32_t wrap_start;
uint32_t wrap_end;
uint32_t wrap_cnt;
int max_len;
int len = 0;
int i = 0;
wrap_start = log_start->wrap;
wrap_end = log->log_pos.wrap;
/* Calculate difference in # of buffer wrap-arounds */
if (wrap_end >= wrap_start)
wrap_cnt = wrap_end - wrap_start;
else {
/* wrap counter has wrapped around, invalidate start position */
wrap_cnt = 2;
}
if (wrap_cnt > 1) {
/* end position has wrapped around more than once, */
/* current start no longer valid */
log_start->wrap = log->log_pos.wrap - 1;
log_start->offset = (log->log_pos.offset + 1) % log_len;
} else if ((wrap_cnt == 1) &&
(log->log_pos.offset > log_start->offset)) {
/* end position has overwritten start */
log_start->offset = (log->log_pos.offset + 1) % log_len;
}
pr_debug("diag_buf wrap = %u, offset = %u\n",
log->log_pos.wrap, log->log_pos.offset);
while (log_start->offset == log->log_pos.offset) {
/*
* No data in ring buffer,
* so we'll hang around until something happens
*/
unsigned long t = msleep_interruptible(50);
if (t != 0) {
/* Some event woke us up, so let's quit */
return 0;
}
if (buf_idx == TZDBG_LOG)
memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase,
debug_rw_buf_size);
}
max_len = (count > debug_rw_buf_size) ? debug_rw_buf_size : count;
pr_debug("diag_buf wrap = %u, offset = %u\n",
log->log_pos.wrap, log->log_pos.offset);
/*
* Read from ring buff while there is data and space in return buff
*/
while ((log_start->offset != log->log_pos.offset) && (len < max_len)) {
tzdbg.disp_buf[i++] = log->log_buf[log_start->offset];
log_start->offset = (log_start->offset + 1) % log_len;
if (log_start->offset == 0)
++log_start->wrap;
++len;
}
/*
* return buffer to caller
*/
tzdbg.stat[buf_idx].data = tzdbg.disp_buf;
return len;
}
static int _disp_log_stats_v2(struct tzdbg_log_v2_t *log,
struct tzdbg_log_pos_v2_t *log_start, uint32_t log_len,
size_t count, uint32_t buf_idx)
{
uint32_t wrap_start;
uint32_t wrap_end;
uint32_t wrap_cnt;
int max_len;
int len = 0;
int i = 0;
wrap_start = log_start->wrap;
wrap_end = log->log_pos.wrap;
/* Calculate difference in # of buffer wrap-arounds */
if (wrap_end >= wrap_start)
wrap_cnt = wrap_end - wrap_start;
else {
/* wrap counter has wrapped around, invalidate start position */
wrap_cnt = 2;
}
if (wrap_cnt > 1) {
/* end position has wrapped around more than once, */
/* current start no longer valid */
log_start->wrap = log->log_pos.wrap - 1;
log_start->offset = (log->log_pos.offset + 1) % log_len;
} else if ((wrap_cnt == 1) &&
(log->log_pos.offset > log_start->offset)) {
/* end position has overwritten start */
log_start->offset = (log->log_pos.offset + 1) % log_len;
}
pr_debug("diag_buf wrap = %u, offset = %u\n",
log->log_pos.wrap, log->log_pos.offset);
while (log_start->offset == log->log_pos.offset) {
/*
* No data in ring buffer,
* so we'll hang around until something happens
*/
unsigned long t = msleep_interruptible(50);
if (t != 0) {
/* Some event woke us up, so let's quit */
return 0;
}
if (buf_idx == TZDBG_LOG)
memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase,
debug_rw_buf_size);
}
max_len = (count > debug_rw_buf_size) ? debug_rw_buf_size : count;
pr_debug("diag_buf wrap = %u, offset = %u\n",
log->log_pos.wrap, log->log_pos.offset);
/*
* Read from ring buff while there is data and space in return buff
*/
while ((log_start->offset != log->log_pos.offset) && (len < max_len)) {
tzdbg.disp_buf[i++] = log->log_buf[log_start->offset];
log_start->offset = (log_start->offset + 1) % log_len;
if (log_start->offset == 0)
++log_start->wrap;
++len;
}
/*
* return buffer to caller
*/
tzdbg.stat[buf_idx].data = tzdbg.disp_buf;
return len;
}
static int __disp_hyp_log_stats(uint8_t *log,
struct hypdbg_log_pos_t *log_start, uint32_t log_len,
size_t count, uint32_t buf_idx)
{
struct hypdbg_t *hyp = tzdbg.hyp_diag_buf;
unsigned long t = 0;
uint32_t wrap_start;
uint32_t wrap_end;
uint32_t wrap_cnt;
int max_len;
int len = 0;
int i = 0;
wrap_start = log_start->wrap;
wrap_end = hyp->log_pos.wrap;
/* Calculate difference in # of buffer wrap-arounds */
if (wrap_end >= wrap_start)
wrap_cnt = wrap_end - wrap_start;
else {
/* wrap counter has wrapped around, invalidate start position */
wrap_cnt = 2;
}
if (wrap_cnt > 1) {
/* end position has wrapped around more than once, */
/* current start no longer valid */
log_start->wrap = hyp->log_pos.wrap - 1;
log_start->offset = (hyp->log_pos.offset + 1) % log_len;
} else if ((wrap_cnt == 1) &&
(hyp->log_pos.offset > log_start->offset)) {
/* end position has overwritten start */
log_start->offset = (hyp->log_pos.offset + 1) % log_len;
}
while (log_start->offset == hyp->log_pos.offset) {
/*
* No data in ring buffer,
* so we'll hang around until something happens
*/
t = msleep_interruptible(50);
if (t != 0) {
/* Some event woke us up, so let's quit */
return 0;
}
/* TZDBG_HYP_LOG */
memcpy_fromio((void *)tzdbg.hyp_diag_buf, tzdbg.hyp_virt_iobase,
tzdbg.hyp_debug_rw_buf_size);
}
max_len = (count > tzdbg.hyp_debug_rw_buf_size) ?
tzdbg.hyp_debug_rw_buf_size : count;
/*
* Read from ring buff while there is data and space in return buff
*/
while ((log_start->offset != hyp->log_pos.offset) && (len < max_len)) {
tzdbg.disp_buf[i++] = log[log_start->offset];
log_start->offset = (log_start->offset + 1) % log_len;
if (log_start->offset == 0)
++log_start->wrap;
++len;
}
/*
* return buffer to caller
*/
tzdbg.stat[buf_idx].data = tzdbg.disp_buf;
return len;
}
static int print_text(char *intro_message,
unsigned char *text_addr,
unsigned int size,
char *buf, uint32_t buf_len)
{
unsigned int i;
int len = 0;
pr_debug("begin address %p, size %d\n", text_addr, size);
len += scnprintf(buf + len, buf_len - len, "%s\n", intro_message);
for (i = 0; i < size; i++) {
if (buf_len <= len + 6) {
pr_err("buffer not enough, buf_len %d, len %d\n",
buf_len, len);
return buf_len;
}
len += scnprintf(buf + len, buf_len - len, "%02hhx ",
text_addr[i]);
if ((i & 0x1f) == 0x1f)
len += scnprintf(buf + len, buf_len - len, "%c", '\n');
}
len += scnprintf(buf + len, buf_len - len, "%c", '\n');
return len;
}
static int _disp_encrpted_log_stats(struct encrypted_log_info *enc_log_info,
enum tzdbg_stats_type type, uint32_t log_id)
{
int ret = 0, len = 0;
struct tzbsp_encr_log_t *encr_log_head;
uint32_t size = 0;
ret = qcom_scm_request_encrypted_log(enc_log_info->paddr,
enc_log_info->size, log_id);
if (ret)
return 0;
encr_log_head = (struct tzbsp_encr_log_t *)(enc_log_info->vaddr);
pr_debug("display_buf_size = %d, encr_log_buff_size = %d\n",
display_buf_size, encr_log_head->encr_log_buff_size);
size = encr_log_head->encr_log_buff_size;
len += scnprintf(tzdbg.disp_buf + len,
(display_buf_size - 1) - len,
"\n-------- New Encrypted %s --------\n",
((log_id == ENCRYPTED_QSEE_LOG_ID) ?
"QSEE Log" : "TZ Dialog"));
len += scnprintf(tzdbg.disp_buf + len,
(display_buf_size - 1) - len,
"\nMagic_Num :\n0x%x\n"
"\nVerion :\n%d\n"
"\nEncr_Log_Buff_Size :\n%d\n"
"\nWrap_Count :\n%d\n",
encr_log_head->magic_num,
encr_log_head->version,
encr_log_head->encr_log_buff_size,
encr_log_head->wrap_count);
len += print_text("\nKey : ", encr_log_head->key,
TZBSP_AES_256_ENCRYPTED_KEY_SIZE,
tzdbg.disp_buf + len, display_buf_size);
len += print_text("\nNonce : ", encr_log_head->nonce,
TZBSP_NONCE_LEN,
tzdbg.disp_buf + len, display_buf_size - len);
len += print_text("\nTag : ", encr_log_head->tag,
TZBSP_TAG_LEN,
tzdbg.disp_buf + len, display_buf_size - len);
if (len > display_buf_size - size)
pr_warn("Cannot fit all info into the buffer\n");
pr_debug("encrypted log size %d, disply buffer size %d, used len %d\n",
size, display_buf_size, len);
len += print_text("\nLog : ", encr_log_head->log_buf, size,
tzdbg.disp_buf + len, display_buf_size - len);
memset(enc_log_info->vaddr, 0, enc_log_info->size);
tzdbg.stat[type].data = tzdbg.disp_buf;
return len;
}
static int _disp_tz_log_stats(size_t count)
{
static struct tzdbg_log_pos_v2_t log_start_v2 = {0};
static struct tzdbg_log_pos_t log_start = {0};
struct tzdbg_log_v2_t *log_v2_ptr;
struct tzdbg_log_t *log_ptr;
log_ptr = (struct tzdbg_log_t *)((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->ring_off -
offsetof(struct tzdbg_log_t, log_buf));
log_v2_ptr = (struct tzdbg_log_v2_t *)((unsigned char *)tzdbg.diag_buf +
tzdbg.diag_buf->ring_off -
offsetof(struct tzdbg_log_v2_t, log_buf));
if (!tzdbg.is_enlarged_buf)
return _disp_log_stats(log_ptr, &log_start,
tzdbg.diag_buf->ring_len, count, TZDBG_LOG);
return _disp_log_stats_v2(log_v2_ptr, &log_start_v2,
tzdbg.diag_buf->ring_len, count, TZDBG_LOG);
}
static int _disp_hyp_log_stats(size_t count)
{
static struct hypdbg_log_pos_t log_start = {0};
uint8_t *log_ptr;
uint32_t log_len;
log_ptr = (uint8_t *)((unsigned char *)tzdbg.hyp_diag_buf +
tzdbg.hyp_diag_buf->ring_off);
log_len = tzdbg.hyp_debug_rw_buf_size - tzdbg.hyp_diag_buf->ring_off;
return __disp_hyp_log_stats(log_ptr, &log_start,
log_len, count, TZDBG_HYP_LOG);
}
static int _disp_qsee_log_stats(size_t count)
{
static struct tzdbg_log_pos_t log_start = {0};
static struct tzdbg_log_pos_v2_t log_start_v2 = {0};
if (!tzdbg.is_enlarged_buf)
return _disp_log_stats(g_qsee_log, &log_start,
QSEE_LOG_BUF_SIZE - sizeof(struct tzdbg_log_pos_t),
count, TZDBG_QSEE_LOG);
return _disp_log_stats_v2(g_qsee_log_v2, &log_start_v2,
QSEE_LOG_BUF_SIZE_V2 - sizeof(struct tzdbg_log_pos_v2_t),
count, TZDBG_QSEE_LOG);
}
static int _disp_hyp_general_stats(size_t count)
{
int len = 0;
int i;
struct hypdbg_boot_info_t *ptr = NULL;
len += scnprintf((unsigned char *)tzdbg.disp_buf + len,
tzdbg.hyp_debug_rw_buf_size - 1,
" Magic Number : 0x%x\n"
" CPU Count : 0x%x\n"
" S2 Fault Counter: 0x%x\n",
tzdbg.hyp_diag_buf->magic_num,
tzdbg.hyp_diag_buf->cpu_count,
tzdbg.hyp_diag_buf->s2_fault_counter);
ptr = tzdbg.hyp_diag_buf->boot_info;
for (i = 0; i < tzdbg.hyp_diag_buf->cpu_count; i++) {
len += scnprintf((unsigned char *)tzdbg.disp_buf + len,
(tzdbg.hyp_debug_rw_buf_size - 1) - len,
" CPU #: %d\n"
" Warmboot entry CPU counter: 0x%x\n"
" Warmboot exit CPU counter : 0x%x\n",
i, ptr->warm_entry_cnt, ptr->warm_exit_cnt);
if (len > (tzdbg.hyp_debug_rw_buf_size - 1)) {
pr_warn("%s: Cannot fit all info into the buffer\n",
__func__);
break;
}
ptr++;
}
tzdbg.stat[TZDBG_HYP_GENERAL].data = (char *)tzdbg.disp_buf;
return len;
}
static ssize_t tzdbgfs_read_unencrypted(struct file *file, char __user *buf,
size_t count, loff_t *offp)
{
int len = 0;
int tz_id = *(int *)(file->private_data);
if (tz_id == TZDBG_BOOT || tz_id == TZDBG_RESET ||
tz_id == TZDBG_INTERRUPT || tz_id == TZDBG_GENERAL ||
tz_id == TZDBG_VMID || tz_id == TZDBG_LOG)
memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase,
debug_rw_buf_size);
if (tz_id == TZDBG_HYP_GENERAL || tz_id == TZDBG_HYP_LOG)
memcpy_fromio((void *)tzdbg.hyp_diag_buf,
tzdbg.hyp_virt_iobase,
tzdbg.hyp_debug_rw_buf_size);
switch (tz_id) {
case TZDBG_BOOT:
len = _disp_tz_boot_stats();
break;
case TZDBG_RESET:
len = _disp_tz_reset_stats();
break;
case TZDBG_INTERRUPT:
len = _disp_tz_interrupt_stats();
break;
case TZDBG_GENERAL:
len = _disp_tz_general_stats();
break;
case TZDBG_VMID:
len = _disp_tz_vmid_stats();
break;
case TZDBG_LOG:
if (TZBSP_DIAG_MAJOR_VERSION_LEGACY <
(tzdbg.diag_buf->version >> 16)) {
len = _disp_tz_log_stats(count);
*offp = 0;
} else {
len = _disp_tz_log_stats_legacy();
}
break;
case TZDBG_QSEE_LOG:
len = _disp_qsee_log_stats(count);
*offp = 0;
break;
case TZDBG_HYP_GENERAL:
len = _disp_hyp_general_stats(count);
break;
case TZDBG_HYP_LOG:
len = _disp_hyp_log_stats(count);
*offp = 0;
break;
default:
break;
}
if (len > count)
len = count;
return simple_read_from_buffer(buf, len, offp,
tzdbg.stat[tz_id].data, len);
}
static ssize_t tzdbgfs_read_encrypted(struct file *file, char __user *buf,
size_t count, loff_t *offp)
{
int len = 0, ret = 0;
int tz_id = *(int *)(file->private_data);
struct tzdbg_stat *stat = &(tzdbg.stat[tz_id]);
pr_debug("%s: tz_id = %d\n", __func__, tz_id);
if (tz_id >= TZDBG_STATS_MAX) {
pr_err("invalid encrypted log id %d\n", tz_id);
return ret;
}
if (!stat->display_len) {
if (tz_id == TZDBG_QSEE_LOG)
stat->display_len = _disp_encrpted_log_stats(
&enc_qseelog_info,
tz_id, ENCRYPTED_QSEE_LOG_ID);
else
stat->display_len = _disp_encrpted_log_stats(
&enc_tzlog_info,
tz_id, ENCRYPTED_TZ_LOG_ID);
stat->display_offset = 0;
}
len = stat->display_len;
if (len > count)
len = count;
*offp = 0;
ret = simple_read_from_buffer(buf, len, offp,
tzdbg.stat[tz_id].data + stat->display_offset,
count);
stat->display_offset += ret;
stat->display_len -= ret;
pr_debug("ret = %d, offset = %d\n", ret, (int)(*offp));
pr_debug("display_len = %d, offset = %d\n",
stat->display_len, stat->display_offset);
return ret;
}
static ssize_t tzdbgfs_read(struct file *file, char __user *buf,
size_t count, loff_t *offp)
{
int tz_id = *(int *)(file->private_data);
if (!tzdbg.is_encrypted_log_enabled ||
(tz_id == TZDBG_HYP_GENERAL || tz_id == TZDBG_HYP_LOG))
return tzdbgfs_read_unencrypted(file, buf, count, offp);
else
return tzdbgfs_read_encrypted(file, buf, count, offp);
}
static const struct file_operations tzdbg_fops = {
.owner = THIS_MODULE,
.read = tzdbgfs_read,
.open = simple_open,
};
/*
* Allocates log buffer from ION, registers the buffer at TZ
*/
static int tzdbg_register_qsee_log_buf(struct platform_device *pdev)
{
int ret = 0;
void *buf = NULL;
uint32_t ns_vmids[] = {VMID_HLOS};
uint32_t ns_vm_perms[] = {PERM_READ | PERM_WRITE};
uint32_t ns_vm_nums = 1;
if (tzdbg.is_enlarged_buf) {
if (of_property_read_u32((&pdev->dev)->of_node,
"qseelog-buf-size-v2", &qseelog_buf_size)) {
pr_debug("Enlarged qseelog buf size isn't defined\n");
qseelog_buf_size = QSEE_LOG_BUF_SIZE_V2;
}
} else {
qseelog_buf_size = QSEE_LOG_BUF_SIZE;
}
pr_debug("qseelog buf size is 0x%x\n", qseelog_buf_size);
buf = dma_alloc_coherent(&pdev->dev,
qseelog_buf_size, &coh_pmem, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
if (!tzdbg.is_encrypted_log_enabled) {
ret = qtee_shmbridge_register(coh_pmem,
qseelog_buf_size, ns_vmids, ns_vm_perms, ns_vm_nums,
PERM_READ | PERM_WRITE,
&qseelog_shmbridge_handle);
if (ret) {
pr_err("failed to create bridge for qsee_log buf\n");
goto exit_free_mem;
}
}
g_qsee_log = (struct tzdbg_log_t *)buf;
g_qsee_log->log_pos.wrap = g_qsee_log->log_pos.offset = 0;
g_qsee_log_v2 = (struct tzdbg_log_v2_t *)buf;
g_qsee_log_v2->log_pos.wrap = g_qsee_log_v2->log_pos.offset = 0;
ret = qcom_scm_register_qsee_log_buf(coh_pmem, qseelog_buf_size);
if (ret != QSEOS_RESULT_SUCCESS) {
pr_err(
"%s: scm_call to register log buf failed, resp result =%lld\n",
__func__, ret);
goto exit_dereg_bridge;
}
return ret;
exit_dereg_bridge:
if (!tzdbg.is_encrypted_log_enabled)
qtee_shmbridge_deregister(qseelog_shmbridge_handle);
exit_free_mem:
dma_free_coherent(&pdev->dev, qseelog_buf_size,
(void *)g_qsee_log, coh_pmem);
return ret;
}
static void tzdbg_free_qsee_log_buf(struct platform_device *pdev)
{
if (!tzdbg.is_encrypted_log_enabled)
qtee_shmbridge_deregister(qseelog_shmbridge_handle);
dma_free_coherent(&pdev->dev, qseelog_buf_size,
(void *)g_qsee_log, coh_pmem);
}
static int tzdbg_allocate_encrypted_log_buf(struct platform_device *pdev)
{
int ret = 0;
uint32_t ns_vmids[] = {VMID_HLOS};
uint32_t ns_vm_perms[] = {PERM_READ | PERM_WRITE};
uint32_t ns_vm_nums = 1;
if (!tzdbg.is_encrypted_log_enabled)
return 0;
/* max encrypted qsee log buf zize (include header, and page align) */
enc_qseelog_info.size = qseelog_buf_size + PAGE_SIZE;
enc_qseelog_info.vaddr = dma_alloc_coherent(&pdev->dev,
enc_qseelog_info.size,
&enc_qseelog_info.paddr, GFP_KERNEL);
if (enc_qseelog_info.vaddr == NULL)
return -ENOMEM;
ret = qtee_shmbridge_register(enc_qseelog_info.paddr,
enc_qseelog_info.size, ns_vmids,
ns_vm_perms, ns_vm_nums,
PERM_READ | PERM_WRITE, &enc_qseelog_info.shmb_handle);
if (ret) {
pr_err("failed to create encr_qsee_log bridge, ret %d\n", ret);
goto exit_free_qseelog;
}
pr_debug("Alloc memory for encr_qsee_log, size = %zu\n",
enc_qseelog_info.size);
enc_tzlog_info.size = debug_rw_buf_size;
enc_tzlog_info.vaddr = dma_alloc_coherent(&pdev->dev,
enc_tzlog_info.size,
&enc_tzlog_info.paddr, GFP_KERNEL);
if (enc_tzlog_info.vaddr == NULL)
goto exit_unreg_qseelog;
ret = qtee_shmbridge_register(enc_tzlog_info.paddr,
enc_tzlog_info.size, ns_vmids, ns_vm_perms, ns_vm_nums,
PERM_READ | PERM_WRITE, &enc_tzlog_info.shmb_handle);
if (ret) {
pr_err("failed to create encr_tz_log bridge, ret = %d\n", ret);
goto exit_free_tzlog;
}
pr_debug("Alloc memory for encr_tz_log, size %zu\n",
enc_qseelog_info.size);
return 0;
exit_free_tzlog:
dma_free_coherent(&pdev->dev, enc_tzlog_info.size,
enc_tzlog_info.vaddr, enc_tzlog_info.paddr);
exit_unreg_qseelog:
qtee_shmbridge_deregister(enc_qseelog_info.shmb_handle);
exit_free_qseelog:
dma_free_coherent(&pdev->dev, enc_qseelog_info.size,
enc_qseelog_info.vaddr, enc_qseelog_info.paddr);
return -ENOMEM;
}
static void tzdbg_free_encrypted_log_buf(struct platform_device *pdev)
{
qtee_shmbridge_deregister(enc_tzlog_info.shmb_handle);
dma_free_coherent(&pdev->dev, enc_tzlog_info.size,
enc_tzlog_info.vaddr, enc_tzlog_info.paddr);
qtee_shmbridge_deregister(enc_qseelog_info.shmb_handle);
dma_free_coherent(&pdev->dev, enc_qseelog_info.size,
enc_qseelog_info.vaddr, enc_qseelog_info.paddr);
}
static int tzdbgfs_init(struct platform_device *pdev)
{
int rc = 0;
int i;
struct dentry *dent_dir;
struct dentry *dent;
dent_dir = debugfs_create_dir("tzdbg", NULL);
if (dent_dir == NULL) {
dev_err(&pdev->dev, "tzdbg debugfs_create_dir failed\n");
return -ENOMEM;
}
for (i = 0; i < TZDBG_STATS_MAX; i++) {
tzdbg.debug_tz[i] = i;
dent = debugfs_create_file_unsafe(tzdbg.stat[i].name,
0444, dent_dir,
&tzdbg.debug_tz[i], &tzdbg_fops);
if (dent == NULL) {
dev_err(&pdev->dev, "TZ debugfs_create_file failed\n");
rc = -ENOMEM;
goto err;
}
}
platform_set_drvdata(pdev, dent_dir);
return 0;
err:
debugfs_remove_recursive(dent_dir);
return rc;
}
static void tzdbgfs_exit(struct platform_device *pdev)
{
struct dentry *dent_dir;
dent_dir = platform_get_drvdata(pdev);
debugfs_remove_recursive(dent_dir);
}
static int __update_hypdbg_base(struct platform_device *pdev,
void __iomem *virt_iobase)
{
phys_addr_t hypdiag_phy_iobase;
uint32_t hyp_address_offset;
uint32_t hyp_size_offset;
struct hypdbg_t *hyp;
uint32_t *ptr = NULL;
if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-address-offset",
&hyp_address_offset)) {
dev_err(&pdev->dev, "hyplog address offset is not defined\n");
return -EINVAL;
}
if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-size-offset",
&hyp_size_offset)) {
dev_err(&pdev->dev, "hyplog size offset is not defined\n");
return -EINVAL;
}
hypdiag_phy_iobase = readl_relaxed(virt_iobase + hyp_address_offset);
tzdbg.hyp_debug_rw_buf_size = readl_relaxed(virt_iobase +
hyp_size_offset);
tzdbg.hyp_virt_iobase = devm_ioremap_nocache(&pdev->dev,
hypdiag_phy_iobase,
tzdbg.hyp_debug_rw_buf_size);
if (!tzdbg.hyp_virt_iobase) {
dev_err(&pdev->dev, "ERROR could not ioremap: start=%pr, len=%u\n",
&hypdiag_phy_iobase, tzdbg.hyp_debug_rw_buf_size);
return -ENXIO;
}
ptr = kzalloc(tzdbg.hyp_debug_rw_buf_size, GFP_KERNEL);
if (!ptr)
return -ENOMEM;
tzdbg.hyp_diag_buf = (struct hypdbg_t *)ptr;
hyp = tzdbg.hyp_diag_buf;
hyp->log_pos.wrap = hyp->log_pos.offset = 0;
return 0;
}
static int tzdbg_get_tz_version(void)
{
u64 version;
int ret = 0;
ret = qcom_scm_get_tz_log_feat_id(&version);
if (ret) {
pr_err("%s: scm_call to get tz version failed\n",
__func__);
return ret;
}
tzdbg.tz_version = version;
ret = qcom_scm_get_tz_feat_id_version(QCOM_SCM_FEAT_DIAG_ID, &version);
if (ret) {
pr_err("%s: scm_call to get tz diag version failed, ret = %d\n",
__func__, ret);
return ret;
}
pr_warn("tz diag version is %x\n", version);
if (
(((version >> TZBSP_FVER_MAJOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK)
== TZBSP_DIAG_MAJOR_VERSION_V9) &&
((((version >> TZBSP_FVER_MINOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK)
== TZBSP_DIAG_MINOR_VERSION_V2) ||
(((version >> TZBSP_FVER_MINOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK)
== TZBSP_DIAG_MINOR_VERSION_V21) ||
(((version >> TZBSP_FVER_MINOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK)
== TZBSP_DIAG_MINOR_VERSION_V22)))
tzdbg.is_enlarged_buf = true;
else
tzdbg.is_enlarged_buf = false;
return ret;
}
static void tzdbg_query_encrypted_log(void)
{
int ret = 0;
uint64_t enabled;
ret = qcom_scm_query_encrypted_log_feature(&enabled);
if (ret) {
pr_err("scm_call QUERY_ENCR_LOG_FEATURE failed ret %d\n", ret);
tzdbg.is_encrypted_log_enabled = false;
} else {
pr_warn("encrypted qseelog enabled is %d\n", enabled);
tzdbg.is_encrypted_log_enabled = enabled;
}
}
/*
* Driver functions
*/
static int tz_log_probe(struct platform_device *pdev)
{
struct resource *resource;
void __iomem *virt_iobase;
phys_addr_t tzdiag_phy_iobase;
uint32_t *ptr = NULL;
int ret = 0;
ret = tzdbg_get_tz_version();
if (ret)
return ret;
/*
* Get address that stores the physical location diagnostic data
*/
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!resource) {
dev_err(&pdev->dev,
"%s: ERROR Missing MEM resource\n", __func__);
return -ENXIO;
}
/*
* Get the debug buffer size
*/
debug_rw_buf_size = resource_size(resource);
/*
* Map address that stores the physical location diagnostic data
*/
virt_iobase = devm_ioremap_nocache(&pdev->dev, resource->start,
debug_rw_buf_size);
if (!virt_iobase) {
dev_err(&pdev->dev,
"%s: ERROR could not ioremap: start=%pr, len=%u\n",
__func__, &resource->start,
(unsigned int)(debug_rw_buf_size));
return -ENXIO;
}
if (pdev->dev.of_node) {
tzdbg.is_hyplog_enabled = of_property_read_bool(
(&pdev->dev)->of_node, "qcom,hyplog-enabled");
if (tzdbg.is_hyplog_enabled) {
ret = __update_hypdbg_base(pdev, virt_iobase);
if (ret) {
dev_err(&pdev->dev,
"%s: fail to get hypdbg_base ret %d\n",
__func__, ret);
return -EINVAL;
}
} else {
dev_info(&pdev->dev, "Hyp log service not support\n");
}
} else {
dev_dbg(&pdev->dev, "Device tree data is not found\n");
}
/*
* Retrieve the address of diagnostic data
*/
tzdiag_phy_iobase = readl_relaxed(virt_iobase);
tzdbg_query_encrypted_log();
/*
* Map the diagnostic information area if encryption is disabled
*/
if (!tzdbg.is_encrypted_log_enabled) {
tzdbg.virt_iobase = devm_ioremap_nocache(&pdev->dev,
tzdiag_phy_iobase, debug_rw_buf_size);
if (!tzdbg.virt_iobase) {
dev_err(&pdev->dev,
"%s: could not ioremap: start=%pr, len=%u\n",
__func__, &tzdiag_phy_iobase,
debug_rw_buf_size);
return -ENXIO;
}
/* allocate diag_buf */
ptr = kzalloc(debug_rw_buf_size, GFP_KERNEL);
if (ptr == NULL)
return -ENOMEM;
tzdbg.diag_buf = (struct tzdbg_t *)ptr;
}
/* register unencrypted qsee log buffer */
ret = tzdbg_register_qsee_log_buf(pdev);
if (ret)
goto exit_free_diag_buf;
/* allocate encrypted qsee and tz log buffer */
ret = tzdbg_allocate_encrypted_log_buf(pdev);
if (ret) {
dev_err(&pdev->dev,
"Failed to allocate encrypted log buffer\n",
__func__);
goto exit_free_qsee_log_buf;
}
/* allocate display_buf */
if (UINT_MAX/4 < qseelog_buf_size) {
pr_err("display_buf_size integer overflow\n");
goto exit_free_qsee_log_buf;
}
display_buf_size = qseelog_buf_size * 4;
tzdbg.disp_buf = dma_alloc_coherent(&pdev->dev, display_buf_size,
&disp_buf_paddr, GFP_KERNEL);
if (tzdbg.disp_buf == NULL) {
ret = -ENOMEM;
goto exit_free_encr_log_buf;
}
if (tzdbgfs_init(pdev))
goto exit_free_disp_buf;
return 0;
exit_free_disp_buf:
dma_free_coherent(&pdev->dev, display_buf_size,
(void *)tzdbg.disp_buf, disp_buf_paddr);
exit_free_encr_log_buf:
tzdbg_free_encrypted_log_buf(pdev);
exit_free_qsee_log_buf:
tzdbg_free_qsee_log_buf(pdev);
exit_free_diag_buf:
if (!tzdbg.is_encrypted_log_enabled)
kfree(tzdbg.diag_buf);
return -ENXIO;
}
static int tz_log_remove(struct platform_device *pdev)
{
tzdbgfs_exit(pdev);
dma_free_coherent(&pdev->dev, display_buf_size,
(void *)tzdbg.disp_buf, disp_buf_paddr);
tzdbg_free_encrypted_log_buf(pdev);
tzdbg_free_qsee_log_buf(pdev);
if (!tzdbg.is_encrypted_log_enabled)
kfree(tzdbg.diag_buf);
return 0;
}
static const struct of_device_id tzlog_match[] = {
{.compatible = "qcom,tz-log"},
{}
};
static struct platform_driver tz_log_driver = {
.probe = tz_log_probe,
.remove = tz_log_remove,
.driver = {
.name = "tz_log",
.of_match_table = tzlog_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
module_platform_driver(tz_log_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TZ Log driver");