b922622ec6
Kernel sockets do not hold a reference for the network namespace to which they point. Socket destruction broadcasting relies on the network namespace and will cause the splat below when a kernel socket is destroyed. This fix simply ignores kernel sockets when they are destroyed. Reported as: general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU: 1 PID: 9130 Comm: kworker/1:1 Not tainted 4.1.0-gelk-debug+ #1 Workqueue: sock_diag_events sock_diag_broadcast_destroy_work Stack: ffff8800b9c586c0 ffff8800b9c586c0 ffff8800ac4692c0 ffff8800936d4a90 ffff8800352efd38 ffffffff8469a93e ffff8800352efd98 ffffffffc09b9b90 ffff8800352efd78 ffff8800ac4692c0 ffff8800b9c586c0 ffff8800831b6ab8 Call Trace: [<ffffffff8469a93e>] ? mutex_unlock+0xe/0x10 [<ffffffffc09b9b90>] ? inet_diag_handler_get_info+0x110/0x1fb [inet_diag] [<ffffffff845c868d>] netlink_broadcast+0x1d/0x20 [<ffffffff8469a93e>] ? mutex_unlock+0xe/0x10 [<ffffffff845b2bf5>] sock_diag_broadcast_destroy_work+0xd5/0x160 [<ffffffff8408ea97>] process_one_work+0x147/0x420 [<ffffffff8408f0f9>] worker_thread+0x69/0x470 [<ffffffff8409fda3>] ? preempt_count_sub+0xa3/0xf0 [<ffffffff8408f090>] ? rescuer_thread+0x320/0x320 [<ffffffff84093cd7>] kthread+0x107/0x120 [<ffffffff84093bd0>] ? kthread_create_on_node+0x1b0/0x1b0 [<ffffffff8469d31f>] ret_from_fork+0x3f/0x70 [<ffffffff84093bd0>] ? kthread_create_on_node+0x1b0/0x1b0 Tested: Using a debug kernel while 'ss -E' is running: ip netns add test-ns ip netns delete test-ns Fixes:eb4cb00852
sock_diag: define destruction multicast groups Fixes:26abe14379
net: Modify sk_alloc to not reference count the netns of kernel sockets. Reported-by: Dave Jones <davej@codemonkey.org.uk> Suggested-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Craig Gallek <kraig@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2978 lines
73 KiB
C
2978 lines
73 KiB
C
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Generic socket support routines. Memory allocators, socket lock/release
|
|
* handler for protocols to use and generic option handler.
|
|
*
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
* Florian La Roche, <flla@stud.uni-sb.de>
|
|
* Alan Cox, <A.Cox@swansea.ac.uk>
|
|
*
|
|
* Fixes:
|
|
* Alan Cox : Numerous verify_area() problems
|
|
* Alan Cox : Connecting on a connecting socket
|
|
* now returns an error for tcp.
|
|
* Alan Cox : sock->protocol is set correctly.
|
|
* and is not sometimes left as 0.
|
|
* Alan Cox : connect handles icmp errors on a
|
|
* connect properly. Unfortunately there
|
|
* is a restart syscall nasty there. I
|
|
* can't match BSD without hacking the C
|
|
* library. Ideas urgently sought!
|
|
* Alan Cox : Disallow bind() to addresses that are
|
|
* not ours - especially broadcast ones!!
|
|
* Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
|
|
* Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
|
|
* instead they leave that for the DESTROY timer.
|
|
* Alan Cox : Clean up error flag in accept
|
|
* Alan Cox : TCP ack handling is buggy, the DESTROY timer
|
|
* was buggy. Put a remove_sock() in the handler
|
|
* for memory when we hit 0. Also altered the timer
|
|
* code. The ACK stuff can wait and needs major
|
|
* TCP layer surgery.
|
|
* Alan Cox : Fixed TCP ack bug, removed remove sock
|
|
* and fixed timer/inet_bh race.
|
|
* Alan Cox : Added zapped flag for TCP
|
|
* Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
|
|
* Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
|
|
* Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
|
|
* Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
|
|
* Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
|
|
* Rick Sladkey : Relaxed UDP rules for matching packets.
|
|
* C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
|
|
* Pauline Middelink : identd support
|
|
* Alan Cox : Fixed connect() taking signals I think.
|
|
* Alan Cox : SO_LINGER supported
|
|
* Alan Cox : Error reporting fixes
|
|
* Anonymous : inet_create tidied up (sk->reuse setting)
|
|
* Alan Cox : inet sockets don't set sk->type!
|
|
* Alan Cox : Split socket option code
|
|
* Alan Cox : Callbacks
|
|
* Alan Cox : Nagle flag for Charles & Johannes stuff
|
|
* Alex : Removed restriction on inet fioctl
|
|
* Alan Cox : Splitting INET from NET core
|
|
* Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
|
|
* Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
|
|
* Alan Cox : Split IP from generic code
|
|
* Alan Cox : New kfree_skbmem()
|
|
* Alan Cox : Make SO_DEBUG superuser only.
|
|
* Alan Cox : Allow anyone to clear SO_DEBUG
|
|
* (compatibility fix)
|
|
* Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
|
|
* Alan Cox : Allocator for a socket is settable.
|
|
* Alan Cox : SO_ERROR includes soft errors.
|
|
* Alan Cox : Allow NULL arguments on some SO_ opts
|
|
* Alan Cox : Generic socket allocation to make hooks
|
|
* easier (suggested by Craig Metz).
|
|
* Michael Pall : SO_ERROR returns positive errno again
|
|
* Steve Whitehouse: Added default destructor to free
|
|
* protocol private data.
|
|
* Steve Whitehouse: Added various other default routines
|
|
* common to several socket families.
|
|
* Chris Evans : Call suser() check last on F_SETOWN
|
|
* Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
|
|
* Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
|
|
* Andi Kleen : Fix write_space callback
|
|
* Chris Evans : Security fixes - signedness again
|
|
* Arnaldo C. Melo : cleanups, use skb_queue_purge
|
|
*
|
|
* To Fix:
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/errqueue.h>
|
|
#include <linux/types.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/in.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/net.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/static_key.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
#include <net/protocol.h>
|
|
#include <linux/skbuff.h>
|
|
#include <net/net_namespace.h>
|
|
#include <net/request_sock.h>
|
|
#include <net/sock.h>
|
|
#include <linux/net_tstamp.h>
|
|
#include <net/xfrm.h>
|
|
#include <linux/ipsec.h>
|
|
#include <net/cls_cgroup.h>
|
|
#include <net/netprio_cgroup.h>
|
|
#include <linux/sock_diag.h>
|
|
|
|
#include <linux/filter.h>
|
|
|
|
#include <trace/events/sock.h>
|
|
|
|
#ifdef CONFIG_INET
|
|
#include <net/tcp.h>
|
|
#endif
|
|
|
|
#include <net/busy_poll.h>
|
|
|
|
static DEFINE_MUTEX(proto_list_mutex);
|
|
static LIST_HEAD(proto_list);
|
|
|
|
/**
|
|
* sk_ns_capable - General socket capability test
|
|
* @sk: Socket to use a capability on or through
|
|
* @user_ns: The user namespace of the capability to use
|
|
* @cap: The capability to use
|
|
*
|
|
* Test to see if the opener of the socket had when the socket was
|
|
* created and the current process has the capability @cap in the user
|
|
* namespace @user_ns.
|
|
*/
|
|
bool sk_ns_capable(const struct sock *sk,
|
|
struct user_namespace *user_ns, int cap)
|
|
{
|
|
return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
|
|
ns_capable(user_ns, cap);
|
|
}
|
|
EXPORT_SYMBOL(sk_ns_capable);
|
|
|
|
/**
|
|
* sk_capable - Socket global capability test
|
|
* @sk: Socket to use a capability on or through
|
|
* @cap: The global capability to use
|
|
*
|
|
* Test to see if the opener of the socket had when the socket was
|
|
* created and the current process has the capability @cap in all user
|
|
* namespaces.
|
|
*/
|
|
bool sk_capable(const struct sock *sk, int cap)
|
|
{
|
|
return sk_ns_capable(sk, &init_user_ns, cap);
|
|
}
|
|
EXPORT_SYMBOL(sk_capable);
|
|
|
|
/**
|
|
* sk_net_capable - Network namespace socket capability test
|
|
* @sk: Socket to use a capability on or through
|
|
* @cap: The capability to use
|
|
*
|
|
* Test to see if the opener of the socket had when the socket was created
|
|
* and the current process has the capability @cap over the network namespace
|
|
* the socket is a member of.
|
|
*/
|
|
bool sk_net_capable(const struct sock *sk, int cap)
|
|
{
|
|
return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
|
|
}
|
|
EXPORT_SYMBOL(sk_net_capable);
|
|
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
|
|
{
|
|
struct proto *proto;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&proto_list_mutex);
|
|
list_for_each_entry(proto, &proto_list, node) {
|
|
if (proto->init_cgroup) {
|
|
ret = proto->init_cgroup(memcg, ss);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&proto_list_mutex);
|
|
return ret;
|
|
out:
|
|
list_for_each_entry_continue_reverse(proto, &proto_list, node)
|
|
if (proto->destroy_cgroup)
|
|
proto->destroy_cgroup(memcg);
|
|
mutex_unlock(&proto_list_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
|
|
{
|
|
struct proto *proto;
|
|
|
|
mutex_lock(&proto_list_mutex);
|
|
list_for_each_entry_reverse(proto, &proto_list, node)
|
|
if (proto->destroy_cgroup)
|
|
proto->destroy_cgroup(memcg);
|
|
mutex_unlock(&proto_list_mutex);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Each address family might have different locking rules, so we have
|
|
* one slock key per address family:
|
|
*/
|
|
static struct lock_class_key af_family_keys[AF_MAX];
|
|
static struct lock_class_key af_family_slock_keys[AF_MAX];
|
|
|
|
#if defined(CONFIG_MEMCG_KMEM)
|
|
struct static_key memcg_socket_limit_enabled;
|
|
EXPORT_SYMBOL(memcg_socket_limit_enabled);
|
|
#endif
|
|
|
|
/*
|
|
* Make lock validator output more readable. (we pre-construct these
|
|
* strings build-time, so that runtime initialization of socket
|
|
* locks is fast):
|
|
*/
|
|
static const char *const af_family_key_strings[AF_MAX+1] = {
|
|
"sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
|
|
"sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
|
|
"sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
|
|
"sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
|
|
"sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
|
|
"sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
|
|
"sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
|
|
"sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
|
|
"sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
|
|
"sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
|
|
"sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
|
|
"sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
|
|
"sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
|
|
"sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
|
|
};
|
|
static const char *const af_family_slock_key_strings[AF_MAX+1] = {
|
|
"slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
|
|
"slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
|
|
"slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
|
|
"slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
|
|
"slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
|
|
"slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
|
|
"slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
|
|
"slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
|
|
"slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
|
|
"slock-27" , "slock-28" , "slock-AF_CAN" ,
|
|
"slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
|
|
"slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
|
|
"slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
|
|
"slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
|
|
};
|
|
static const char *const af_family_clock_key_strings[AF_MAX+1] = {
|
|
"clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
|
|
"clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
|
|
"clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
|
|
"clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
|
|
"clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
|
|
"clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
|
|
"clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
|
|
"clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
|
|
"clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
|
|
"clock-27" , "clock-28" , "clock-AF_CAN" ,
|
|
"clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
|
|
"clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
|
|
"clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
|
|
"clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
|
|
};
|
|
|
|
/*
|
|
* sk_callback_lock locking rules are per-address-family,
|
|
* so split the lock classes by using a per-AF key:
|
|
*/
|
|
static struct lock_class_key af_callback_keys[AF_MAX];
|
|
|
|
/* Take into consideration the size of the struct sk_buff overhead in the
|
|
* determination of these values, since that is non-constant across
|
|
* platforms. This makes socket queueing behavior and performance
|
|
* not depend upon such differences.
|
|
*/
|
|
#define _SK_MEM_PACKETS 256
|
|
#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
|
|
#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
|
|
#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
|
|
|
|
/* Run time adjustable parameters. */
|
|
__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
|
|
EXPORT_SYMBOL(sysctl_wmem_max);
|
|
__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
|
|
EXPORT_SYMBOL(sysctl_rmem_max);
|
|
__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
|
|
__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
|
|
|
|
/* Maximal space eaten by iovec or ancillary data plus some space */
|
|
int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
|
|
EXPORT_SYMBOL(sysctl_optmem_max);
|
|
|
|
int sysctl_tstamp_allow_data __read_mostly = 1;
|
|
|
|
struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
|
|
EXPORT_SYMBOL_GPL(memalloc_socks);
|
|
|
|
/**
|
|
* sk_set_memalloc - sets %SOCK_MEMALLOC
|
|
* @sk: socket to set it on
|
|
*
|
|
* Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
|
|
* It's the responsibility of the admin to adjust min_free_kbytes
|
|
* to meet the requirements
|
|
*/
|
|
void sk_set_memalloc(struct sock *sk)
|
|
{
|
|
sock_set_flag(sk, SOCK_MEMALLOC);
|
|
sk->sk_allocation |= __GFP_MEMALLOC;
|
|
static_key_slow_inc(&memalloc_socks);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_set_memalloc);
|
|
|
|
void sk_clear_memalloc(struct sock *sk)
|
|
{
|
|
sock_reset_flag(sk, SOCK_MEMALLOC);
|
|
sk->sk_allocation &= ~__GFP_MEMALLOC;
|
|
static_key_slow_dec(&memalloc_socks);
|
|
|
|
/*
|
|
* SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
|
|
* progress of swapping. SOCK_MEMALLOC may be cleared while
|
|
* it has rmem allocations due to the last swapfile being deactivated
|
|
* but there is a risk that the socket is unusable due to exceeding
|
|
* the rmem limits. Reclaim the reserves and obey rmem limits again.
|
|
*/
|
|
sk_mem_reclaim(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_clear_memalloc);
|
|
|
|
int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
int ret;
|
|
unsigned long pflags = current->flags;
|
|
|
|
/* these should have been dropped before queueing */
|
|
BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
|
|
|
|
current->flags |= PF_MEMALLOC;
|
|
ret = sk->sk_backlog_rcv(sk, skb);
|
|
tsk_restore_flags(current, pflags, PF_MEMALLOC);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__sk_backlog_rcv);
|
|
|
|
static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
|
|
{
|
|
struct timeval tv;
|
|
|
|
if (optlen < sizeof(tv))
|
|
return -EINVAL;
|
|
if (copy_from_user(&tv, optval, sizeof(tv)))
|
|
return -EFAULT;
|
|
if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
|
|
return -EDOM;
|
|
|
|
if (tv.tv_sec < 0) {
|
|
static int warned __read_mostly;
|
|
|
|
*timeo_p = 0;
|
|
if (warned < 10 && net_ratelimit()) {
|
|
warned++;
|
|
pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
|
|
__func__, current->comm, task_pid_nr(current));
|
|
}
|
|
return 0;
|
|
}
|
|
*timeo_p = MAX_SCHEDULE_TIMEOUT;
|
|
if (tv.tv_sec == 0 && tv.tv_usec == 0)
|
|
return 0;
|
|
if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
|
|
*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
|
|
return 0;
|
|
}
|
|
|
|
static void sock_warn_obsolete_bsdism(const char *name)
|
|
{
|
|
static int warned;
|
|
static char warncomm[TASK_COMM_LEN];
|
|
if (strcmp(warncomm, current->comm) && warned < 5) {
|
|
strcpy(warncomm, current->comm);
|
|
pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
|
|
warncomm, name);
|
|
warned++;
|
|
}
|
|
}
|
|
|
|
#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
|
|
|
|
static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
|
|
{
|
|
if (sk->sk_flags & flags) {
|
|
sk->sk_flags &= ~flags;
|
|
if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
|
|
net_disable_timestamp();
|
|
}
|
|
}
|
|
|
|
|
|
int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
unsigned long flags;
|
|
struct sk_buff_head *list = &sk->sk_receive_queue;
|
|
|
|
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
|
|
atomic_inc(&sk->sk_drops);
|
|
trace_sock_rcvqueue_full(sk, skb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = sk_filter(sk, skb);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
|
|
atomic_inc(&sk->sk_drops);
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
skb->dev = NULL;
|
|
skb_set_owner_r(skb, sk);
|
|
|
|
/* we escape from rcu protected region, make sure we dont leak
|
|
* a norefcounted dst
|
|
*/
|
|
skb_dst_force(skb);
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
sock_skb_set_dropcount(sk, skb);
|
|
__skb_queue_tail(list, skb);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
|
|
if (!sock_flag(sk, SOCK_DEAD))
|
|
sk->sk_data_ready(sk);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sock_queue_rcv_skb);
|
|
|
|
int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
|
|
{
|
|
int rc = NET_RX_SUCCESS;
|
|
|
|
if (sk_filter(sk, skb))
|
|
goto discard_and_relse;
|
|
|
|
skb->dev = NULL;
|
|
|
|
if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
|
|
atomic_inc(&sk->sk_drops);
|
|
goto discard_and_relse;
|
|
}
|
|
if (nested)
|
|
bh_lock_sock_nested(sk);
|
|
else
|
|
bh_lock_sock(sk);
|
|
if (!sock_owned_by_user(sk)) {
|
|
/*
|
|
* trylock + unlock semantics:
|
|
*/
|
|
mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
|
|
|
|
rc = sk_backlog_rcv(sk, skb);
|
|
|
|
mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
|
|
} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
|
|
bh_unlock_sock(sk);
|
|
atomic_inc(&sk->sk_drops);
|
|
goto discard_and_relse;
|
|
}
|
|
|
|
bh_unlock_sock(sk);
|
|
out:
|
|
sock_put(sk);
|
|
return rc;
|
|
discard_and_relse:
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(sk_receive_skb);
|
|
|
|
struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
|
|
{
|
|
struct dst_entry *dst = __sk_dst_get(sk);
|
|
|
|
if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
|
|
sk_tx_queue_clear(sk);
|
|
RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
|
|
dst_release(dst);
|
|
return NULL;
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
EXPORT_SYMBOL(__sk_dst_check);
|
|
|
|
struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
|
|
{
|
|
struct dst_entry *dst = sk_dst_get(sk);
|
|
|
|
if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
|
|
sk_dst_reset(sk);
|
|
dst_release(dst);
|
|
return NULL;
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
EXPORT_SYMBOL(sk_dst_check);
|
|
|
|
static int sock_setbindtodevice(struct sock *sk, char __user *optval,
|
|
int optlen)
|
|
{
|
|
int ret = -ENOPROTOOPT;
|
|
#ifdef CONFIG_NETDEVICES
|
|
struct net *net = sock_net(sk);
|
|
char devname[IFNAMSIZ];
|
|
int index;
|
|
|
|
/* Sorry... */
|
|
ret = -EPERM;
|
|
if (!ns_capable(net->user_ns, CAP_NET_RAW))
|
|
goto out;
|
|
|
|
ret = -EINVAL;
|
|
if (optlen < 0)
|
|
goto out;
|
|
|
|
/* Bind this socket to a particular device like "eth0",
|
|
* as specified in the passed interface name. If the
|
|
* name is "" or the option length is zero the socket
|
|
* is not bound.
|
|
*/
|
|
if (optlen > IFNAMSIZ - 1)
|
|
optlen = IFNAMSIZ - 1;
|
|
memset(devname, 0, sizeof(devname));
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(devname, optval, optlen))
|
|
goto out;
|
|
|
|
index = 0;
|
|
if (devname[0] != '\0') {
|
|
struct net_device *dev;
|
|
|
|
rcu_read_lock();
|
|
dev = dev_get_by_name_rcu(net, devname);
|
|
if (dev)
|
|
index = dev->ifindex;
|
|
rcu_read_unlock();
|
|
ret = -ENODEV;
|
|
if (!dev)
|
|
goto out;
|
|
}
|
|
|
|
lock_sock(sk);
|
|
sk->sk_bound_dev_if = index;
|
|
sk_dst_reset(sk);
|
|
release_sock(sk);
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sock_getbindtodevice(struct sock *sk, char __user *optval,
|
|
int __user *optlen, int len)
|
|
{
|
|
int ret = -ENOPROTOOPT;
|
|
#ifdef CONFIG_NETDEVICES
|
|
struct net *net = sock_net(sk);
|
|
char devname[IFNAMSIZ];
|
|
|
|
if (sk->sk_bound_dev_if == 0) {
|
|
len = 0;
|
|
goto zero;
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
if (len < IFNAMSIZ)
|
|
goto out;
|
|
|
|
ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
|
|
if (ret)
|
|
goto out;
|
|
|
|
len = strlen(devname) + 1;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_to_user(optval, devname, len))
|
|
goto out;
|
|
|
|
zero:
|
|
ret = -EFAULT;
|
|
if (put_user(len, optlen))
|
|
goto out;
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
|
|
{
|
|
if (valbool)
|
|
sock_set_flag(sk, bit);
|
|
else
|
|
sock_reset_flag(sk, bit);
|
|
}
|
|
|
|
bool sk_mc_loop(struct sock *sk)
|
|
{
|
|
if (dev_recursion_level())
|
|
return false;
|
|
if (!sk)
|
|
return true;
|
|
switch (sk->sk_family) {
|
|
case AF_INET:
|
|
return inet_sk(sk)->mc_loop;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
case AF_INET6:
|
|
return inet6_sk(sk)->mc_loop;
|
|
#endif
|
|
}
|
|
WARN_ON(1);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(sk_mc_loop);
|
|
|
|
/*
|
|
* This is meant for all protocols to use and covers goings on
|
|
* at the socket level. Everything here is generic.
|
|
*/
|
|
|
|
int sock_setsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, unsigned int optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
int val;
|
|
int valbool;
|
|
struct linger ling;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Options without arguments
|
|
*/
|
|
|
|
if (optname == SO_BINDTODEVICE)
|
|
return sock_setbindtodevice(sk, optval, optlen);
|
|
|
|
if (optlen < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
if (get_user(val, (int __user *)optval))
|
|
return -EFAULT;
|
|
|
|
valbool = val ? 1 : 0;
|
|
|
|
lock_sock(sk);
|
|
|
|
switch (optname) {
|
|
case SO_DEBUG:
|
|
if (val && !capable(CAP_NET_ADMIN))
|
|
ret = -EACCES;
|
|
else
|
|
sock_valbool_flag(sk, SOCK_DBG, valbool);
|
|
break;
|
|
case SO_REUSEADDR:
|
|
sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
|
|
break;
|
|
case SO_REUSEPORT:
|
|
sk->sk_reuseport = valbool;
|
|
break;
|
|
case SO_TYPE:
|
|
case SO_PROTOCOL:
|
|
case SO_DOMAIN:
|
|
case SO_ERROR:
|
|
ret = -ENOPROTOOPT;
|
|
break;
|
|
case SO_DONTROUTE:
|
|
sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
|
|
break;
|
|
case SO_BROADCAST:
|
|
sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
|
|
break;
|
|
case SO_SNDBUF:
|
|
/* Don't error on this BSD doesn't and if you think
|
|
* about it this is right. Otherwise apps have to
|
|
* play 'guess the biggest size' games. RCVBUF/SNDBUF
|
|
* are treated in BSD as hints
|
|
*/
|
|
val = min_t(u32, val, sysctl_wmem_max);
|
|
set_sndbuf:
|
|
sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
|
|
sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
|
|
/* Wake up sending tasks if we upped the value. */
|
|
sk->sk_write_space(sk);
|
|
break;
|
|
|
|
case SO_SNDBUFFORCE:
|
|
if (!capable(CAP_NET_ADMIN)) {
|
|
ret = -EPERM;
|
|
break;
|
|
}
|
|
goto set_sndbuf;
|
|
|
|
case SO_RCVBUF:
|
|
/* Don't error on this BSD doesn't and if you think
|
|
* about it this is right. Otherwise apps have to
|
|
* play 'guess the biggest size' games. RCVBUF/SNDBUF
|
|
* are treated in BSD as hints
|
|
*/
|
|
val = min_t(u32, val, sysctl_rmem_max);
|
|
set_rcvbuf:
|
|
sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
|
|
/*
|
|
* We double it on the way in to account for
|
|
* "struct sk_buff" etc. overhead. Applications
|
|
* assume that the SO_RCVBUF setting they make will
|
|
* allow that much actual data to be received on that
|
|
* socket.
|
|
*
|
|
* Applications are unaware that "struct sk_buff" and
|
|
* other overheads allocate from the receive buffer
|
|
* during socket buffer allocation.
|
|
*
|
|
* And after considering the possible alternatives,
|
|
* returning the value we actually used in getsockopt
|
|
* is the most desirable behavior.
|
|
*/
|
|
sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
|
|
break;
|
|
|
|
case SO_RCVBUFFORCE:
|
|
if (!capable(CAP_NET_ADMIN)) {
|
|
ret = -EPERM;
|
|
break;
|
|
}
|
|
goto set_rcvbuf;
|
|
|
|
case SO_KEEPALIVE:
|
|
#ifdef CONFIG_INET
|
|
if (sk->sk_protocol == IPPROTO_TCP &&
|
|
sk->sk_type == SOCK_STREAM)
|
|
tcp_set_keepalive(sk, valbool);
|
|
#endif
|
|
sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
|
|
break;
|
|
|
|
case SO_OOBINLINE:
|
|
sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
|
|
break;
|
|
|
|
case SO_NO_CHECK:
|
|
sk->sk_no_check_tx = valbool;
|
|
break;
|
|
|
|
case SO_PRIORITY:
|
|
if ((val >= 0 && val <= 6) ||
|
|
ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
|
|
sk->sk_priority = val;
|
|
else
|
|
ret = -EPERM;
|
|
break;
|
|
|
|
case SO_LINGER:
|
|
if (optlen < sizeof(ling)) {
|
|
ret = -EINVAL; /* 1003.1g */
|
|
break;
|
|
}
|
|
if (copy_from_user(&ling, optval, sizeof(ling))) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
if (!ling.l_onoff)
|
|
sock_reset_flag(sk, SOCK_LINGER);
|
|
else {
|
|
#if (BITS_PER_LONG == 32)
|
|
if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
|
|
sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
|
|
else
|
|
#endif
|
|
sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
|
|
sock_set_flag(sk, SOCK_LINGER);
|
|
}
|
|
break;
|
|
|
|
case SO_BSDCOMPAT:
|
|
sock_warn_obsolete_bsdism("setsockopt");
|
|
break;
|
|
|
|
case SO_PASSCRED:
|
|
if (valbool)
|
|
set_bit(SOCK_PASSCRED, &sock->flags);
|
|
else
|
|
clear_bit(SOCK_PASSCRED, &sock->flags);
|
|
break;
|
|
|
|
case SO_TIMESTAMP:
|
|
case SO_TIMESTAMPNS:
|
|
if (valbool) {
|
|
if (optname == SO_TIMESTAMP)
|
|
sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
|
|
else
|
|
sock_set_flag(sk, SOCK_RCVTSTAMPNS);
|
|
sock_set_flag(sk, SOCK_RCVTSTAMP);
|
|
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
|
|
} else {
|
|
sock_reset_flag(sk, SOCK_RCVTSTAMP);
|
|
sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
|
|
}
|
|
break;
|
|
|
|
case SO_TIMESTAMPING:
|
|
if (val & ~SOF_TIMESTAMPING_MASK) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (val & SOF_TIMESTAMPING_OPT_ID &&
|
|
!(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
|
|
if (sk->sk_protocol == IPPROTO_TCP) {
|
|
if (sk->sk_state != TCP_ESTABLISHED) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
sk->sk_tskey = tcp_sk(sk)->snd_una;
|
|
} else {
|
|
sk->sk_tskey = 0;
|
|
}
|
|
}
|
|
sk->sk_tsflags = val;
|
|
if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
|
|
sock_enable_timestamp(sk,
|
|
SOCK_TIMESTAMPING_RX_SOFTWARE);
|
|
else
|
|
sock_disable_timestamp(sk,
|
|
(1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
|
|
break;
|
|
|
|
case SO_RCVLOWAT:
|
|
if (val < 0)
|
|
val = INT_MAX;
|
|
sk->sk_rcvlowat = val ? : 1;
|
|
break;
|
|
|
|
case SO_RCVTIMEO:
|
|
ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
|
|
break;
|
|
|
|
case SO_SNDTIMEO:
|
|
ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
|
|
break;
|
|
|
|
case SO_ATTACH_FILTER:
|
|
ret = -EINVAL;
|
|
if (optlen == sizeof(struct sock_fprog)) {
|
|
struct sock_fprog fprog;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&fprog, optval, sizeof(fprog)))
|
|
break;
|
|
|
|
ret = sk_attach_filter(&fprog, sk);
|
|
}
|
|
break;
|
|
|
|
case SO_ATTACH_BPF:
|
|
ret = -EINVAL;
|
|
if (optlen == sizeof(u32)) {
|
|
u32 ufd;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&ufd, optval, sizeof(ufd)))
|
|
break;
|
|
|
|
ret = sk_attach_bpf(ufd, sk);
|
|
}
|
|
break;
|
|
|
|
case SO_DETACH_FILTER:
|
|
ret = sk_detach_filter(sk);
|
|
break;
|
|
|
|
case SO_LOCK_FILTER:
|
|
if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
|
|
ret = -EPERM;
|
|
else
|
|
sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
|
|
break;
|
|
|
|
case SO_PASSSEC:
|
|
if (valbool)
|
|
set_bit(SOCK_PASSSEC, &sock->flags);
|
|
else
|
|
clear_bit(SOCK_PASSSEC, &sock->flags);
|
|
break;
|
|
case SO_MARK:
|
|
if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
|
|
ret = -EPERM;
|
|
else
|
|
sk->sk_mark = val;
|
|
break;
|
|
|
|
case SO_RXQ_OVFL:
|
|
sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
|
|
break;
|
|
|
|
case SO_WIFI_STATUS:
|
|
sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
|
|
break;
|
|
|
|
case SO_PEEK_OFF:
|
|
if (sock->ops->set_peek_off)
|
|
ret = sock->ops->set_peek_off(sk, val);
|
|
else
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
|
|
case SO_NOFCS:
|
|
sock_valbool_flag(sk, SOCK_NOFCS, valbool);
|
|
break;
|
|
|
|
case SO_SELECT_ERR_QUEUE:
|
|
sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
|
|
break;
|
|
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
case SO_BUSY_POLL:
|
|
/* allow unprivileged users to decrease the value */
|
|
if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
|
|
ret = -EPERM;
|
|
else {
|
|
if (val < 0)
|
|
ret = -EINVAL;
|
|
else
|
|
sk->sk_ll_usec = val;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case SO_MAX_PACING_RATE:
|
|
sk->sk_max_pacing_rate = val;
|
|
sk->sk_pacing_rate = min(sk->sk_pacing_rate,
|
|
sk->sk_max_pacing_rate);
|
|
break;
|
|
|
|
default:
|
|
ret = -ENOPROTOOPT;
|
|
break;
|
|
}
|
|
release_sock(sk);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(sock_setsockopt);
|
|
|
|
|
|
static void cred_to_ucred(struct pid *pid, const struct cred *cred,
|
|
struct ucred *ucred)
|
|
{
|
|
ucred->pid = pid_vnr(pid);
|
|
ucred->uid = ucred->gid = -1;
|
|
if (cred) {
|
|
struct user_namespace *current_ns = current_user_ns();
|
|
|
|
ucred->uid = from_kuid_munged(current_ns, cred->euid);
|
|
ucred->gid = from_kgid_munged(current_ns, cred->egid);
|
|
}
|
|
}
|
|
|
|
int sock_getsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
|
|
union {
|
|
int val;
|
|
struct linger ling;
|
|
struct timeval tm;
|
|
} v;
|
|
|
|
int lv = sizeof(int);
|
|
int len;
|
|
|
|
if (get_user(len, optlen))
|
|
return -EFAULT;
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
|
|
memset(&v, 0, sizeof(v));
|
|
|
|
switch (optname) {
|
|
case SO_DEBUG:
|
|
v.val = sock_flag(sk, SOCK_DBG);
|
|
break;
|
|
|
|
case SO_DONTROUTE:
|
|
v.val = sock_flag(sk, SOCK_LOCALROUTE);
|
|
break;
|
|
|
|
case SO_BROADCAST:
|
|
v.val = sock_flag(sk, SOCK_BROADCAST);
|
|
break;
|
|
|
|
case SO_SNDBUF:
|
|
v.val = sk->sk_sndbuf;
|
|
break;
|
|
|
|
case SO_RCVBUF:
|
|
v.val = sk->sk_rcvbuf;
|
|
break;
|
|
|
|
case SO_REUSEADDR:
|
|
v.val = sk->sk_reuse;
|
|
break;
|
|
|
|
case SO_REUSEPORT:
|
|
v.val = sk->sk_reuseport;
|
|
break;
|
|
|
|
case SO_KEEPALIVE:
|
|
v.val = sock_flag(sk, SOCK_KEEPOPEN);
|
|
break;
|
|
|
|
case SO_TYPE:
|
|
v.val = sk->sk_type;
|
|
break;
|
|
|
|
case SO_PROTOCOL:
|
|
v.val = sk->sk_protocol;
|
|
break;
|
|
|
|
case SO_DOMAIN:
|
|
v.val = sk->sk_family;
|
|
break;
|
|
|
|
case SO_ERROR:
|
|
v.val = -sock_error(sk);
|
|
if (v.val == 0)
|
|
v.val = xchg(&sk->sk_err_soft, 0);
|
|
break;
|
|
|
|
case SO_OOBINLINE:
|
|
v.val = sock_flag(sk, SOCK_URGINLINE);
|
|
break;
|
|
|
|
case SO_NO_CHECK:
|
|
v.val = sk->sk_no_check_tx;
|
|
break;
|
|
|
|
case SO_PRIORITY:
|
|
v.val = sk->sk_priority;
|
|
break;
|
|
|
|
case SO_LINGER:
|
|
lv = sizeof(v.ling);
|
|
v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
|
|
v.ling.l_linger = sk->sk_lingertime / HZ;
|
|
break;
|
|
|
|
case SO_BSDCOMPAT:
|
|
sock_warn_obsolete_bsdism("getsockopt");
|
|
break;
|
|
|
|
case SO_TIMESTAMP:
|
|
v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
|
|
!sock_flag(sk, SOCK_RCVTSTAMPNS);
|
|
break;
|
|
|
|
case SO_TIMESTAMPNS:
|
|
v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
|
|
break;
|
|
|
|
case SO_TIMESTAMPING:
|
|
v.val = sk->sk_tsflags;
|
|
break;
|
|
|
|
case SO_RCVTIMEO:
|
|
lv = sizeof(struct timeval);
|
|
if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
|
|
v.tm.tv_sec = 0;
|
|
v.tm.tv_usec = 0;
|
|
} else {
|
|
v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
|
|
v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
|
|
}
|
|
break;
|
|
|
|
case SO_SNDTIMEO:
|
|
lv = sizeof(struct timeval);
|
|
if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
|
|
v.tm.tv_sec = 0;
|
|
v.tm.tv_usec = 0;
|
|
} else {
|
|
v.tm.tv_sec = sk->sk_sndtimeo / HZ;
|
|
v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
|
|
}
|
|
break;
|
|
|
|
case SO_RCVLOWAT:
|
|
v.val = sk->sk_rcvlowat;
|
|
break;
|
|
|
|
case SO_SNDLOWAT:
|
|
v.val = 1;
|
|
break;
|
|
|
|
case SO_PASSCRED:
|
|
v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
|
|
break;
|
|
|
|
case SO_PEERCRED:
|
|
{
|
|
struct ucred peercred;
|
|
if (len > sizeof(peercred))
|
|
len = sizeof(peercred);
|
|
cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
|
|
if (copy_to_user(optval, &peercred, len))
|
|
return -EFAULT;
|
|
goto lenout;
|
|
}
|
|
|
|
case SO_PEERNAME:
|
|
{
|
|
char address[128];
|
|
|
|
if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
|
|
return -ENOTCONN;
|
|
if (lv < len)
|
|
return -EINVAL;
|
|
if (copy_to_user(optval, address, len))
|
|
return -EFAULT;
|
|
goto lenout;
|
|
}
|
|
|
|
/* Dubious BSD thing... Probably nobody even uses it, but
|
|
* the UNIX standard wants it for whatever reason... -DaveM
|
|
*/
|
|
case SO_ACCEPTCONN:
|
|
v.val = sk->sk_state == TCP_LISTEN;
|
|
break;
|
|
|
|
case SO_PASSSEC:
|
|
v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
|
|
break;
|
|
|
|
case SO_PEERSEC:
|
|
return security_socket_getpeersec_stream(sock, optval, optlen, len);
|
|
|
|
case SO_MARK:
|
|
v.val = sk->sk_mark;
|
|
break;
|
|
|
|
case SO_RXQ_OVFL:
|
|
v.val = sock_flag(sk, SOCK_RXQ_OVFL);
|
|
break;
|
|
|
|
case SO_WIFI_STATUS:
|
|
v.val = sock_flag(sk, SOCK_WIFI_STATUS);
|
|
break;
|
|
|
|
case SO_PEEK_OFF:
|
|
if (!sock->ops->set_peek_off)
|
|
return -EOPNOTSUPP;
|
|
|
|
v.val = sk->sk_peek_off;
|
|
break;
|
|
case SO_NOFCS:
|
|
v.val = sock_flag(sk, SOCK_NOFCS);
|
|
break;
|
|
|
|
case SO_BINDTODEVICE:
|
|
return sock_getbindtodevice(sk, optval, optlen, len);
|
|
|
|
case SO_GET_FILTER:
|
|
len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
|
|
if (len < 0)
|
|
return len;
|
|
|
|
goto lenout;
|
|
|
|
case SO_LOCK_FILTER:
|
|
v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
|
|
break;
|
|
|
|
case SO_BPF_EXTENSIONS:
|
|
v.val = bpf_tell_extensions();
|
|
break;
|
|
|
|
case SO_SELECT_ERR_QUEUE:
|
|
v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
|
|
break;
|
|
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
case SO_BUSY_POLL:
|
|
v.val = sk->sk_ll_usec;
|
|
break;
|
|
#endif
|
|
|
|
case SO_MAX_PACING_RATE:
|
|
v.val = sk->sk_max_pacing_rate;
|
|
break;
|
|
|
|
case SO_INCOMING_CPU:
|
|
v.val = sk->sk_incoming_cpu;
|
|
break;
|
|
|
|
default:
|
|
/* We implement the SO_SNDLOWAT etc to not be settable
|
|
* (1003.1g 7).
|
|
*/
|
|
return -ENOPROTOOPT;
|
|
}
|
|
|
|
if (len > lv)
|
|
len = lv;
|
|
if (copy_to_user(optval, &v, len))
|
|
return -EFAULT;
|
|
lenout:
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize an sk_lock.
|
|
*
|
|
* (We also register the sk_lock with the lock validator.)
|
|
*/
|
|
static inline void sock_lock_init(struct sock *sk)
|
|
{
|
|
sock_lock_init_class_and_name(sk,
|
|
af_family_slock_key_strings[sk->sk_family],
|
|
af_family_slock_keys + sk->sk_family,
|
|
af_family_key_strings[sk->sk_family],
|
|
af_family_keys + sk->sk_family);
|
|
}
|
|
|
|
/*
|
|
* Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
|
|
* even temporarly, because of RCU lookups. sk_node should also be left as is.
|
|
* We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
|
|
*/
|
|
static void sock_copy(struct sock *nsk, const struct sock *osk)
|
|
{
|
|
#ifdef CONFIG_SECURITY_NETWORK
|
|
void *sptr = nsk->sk_security;
|
|
#endif
|
|
memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
|
|
|
|
memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
|
|
osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
|
|
|
|
#ifdef CONFIG_SECURITY_NETWORK
|
|
nsk->sk_security = sptr;
|
|
security_sk_clone(osk, nsk);
|
|
#endif
|
|
}
|
|
|
|
void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
|
|
{
|
|
unsigned long nulls1, nulls2;
|
|
|
|
nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
|
|
nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
|
|
if (nulls1 > nulls2)
|
|
swap(nulls1, nulls2);
|
|
|
|
if (nulls1 != 0)
|
|
memset((char *)sk, 0, nulls1);
|
|
memset((char *)sk + nulls1 + sizeof(void *), 0,
|
|
nulls2 - nulls1 - sizeof(void *));
|
|
memset((char *)sk + nulls2 + sizeof(void *), 0,
|
|
size - nulls2 - sizeof(void *));
|
|
}
|
|
EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
|
|
|
|
static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
|
|
int family)
|
|
{
|
|
struct sock *sk;
|
|
struct kmem_cache *slab;
|
|
|
|
slab = prot->slab;
|
|
if (slab != NULL) {
|
|
sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
|
|
if (!sk)
|
|
return sk;
|
|
if (priority & __GFP_ZERO) {
|
|
if (prot->clear_sk)
|
|
prot->clear_sk(sk, prot->obj_size);
|
|
else
|
|
sk_prot_clear_nulls(sk, prot->obj_size);
|
|
}
|
|
} else
|
|
sk = kmalloc(prot->obj_size, priority);
|
|
|
|
if (sk != NULL) {
|
|
kmemcheck_annotate_bitfield(sk, flags);
|
|
|
|
if (security_sk_alloc(sk, family, priority))
|
|
goto out_free;
|
|
|
|
if (!try_module_get(prot->owner))
|
|
goto out_free_sec;
|
|
sk_tx_queue_clear(sk);
|
|
}
|
|
|
|
return sk;
|
|
|
|
out_free_sec:
|
|
security_sk_free(sk);
|
|
out_free:
|
|
if (slab != NULL)
|
|
kmem_cache_free(slab, sk);
|
|
else
|
|
kfree(sk);
|
|
return NULL;
|
|
}
|
|
|
|
static void sk_prot_free(struct proto *prot, struct sock *sk)
|
|
{
|
|
struct kmem_cache *slab;
|
|
struct module *owner;
|
|
|
|
owner = prot->owner;
|
|
slab = prot->slab;
|
|
|
|
security_sk_free(sk);
|
|
if (slab != NULL)
|
|
kmem_cache_free(slab, sk);
|
|
else
|
|
kfree(sk);
|
|
module_put(owner);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
|
|
void sock_update_netprioidx(struct sock *sk)
|
|
{
|
|
if (in_interrupt())
|
|
return;
|
|
|
|
sk->sk_cgrp_prioidx = task_netprioidx(current);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sock_update_netprioidx);
|
|
#endif
|
|
|
|
/**
|
|
* sk_alloc - All socket objects are allocated here
|
|
* @net: the applicable net namespace
|
|
* @family: protocol family
|
|
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
|
|
* @prot: struct proto associated with this new sock instance
|
|
* @kern: is this to be a kernel socket?
|
|
*/
|
|
struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
|
|
struct proto *prot, int kern)
|
|
{
|
|
struct sock *sk;
|
|
|
|
sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
|
|
if (sk) {
|
|
sk->sk_family = family;
|
|
/*
|
|
* See comment in struct sock definition to understand
|
|
* why we need sk_prot_creator -acme
|
|
*/
|
|
sk->sk_prot = sk->sk_prot_creator = prot;
|
|
sock_lock_init(sk);
|
|
sk->sk_net_refcnt = kern ? 0 : 1;
|
|
if (likely(sk->sk_net_refcnt))
|
|
get_net(net);
|
|
sock_net_set(sk, net);
|
|
atomic_set(&sk->sk_wmem_alloc, 1);
|
|
|
|
sock_update_classid(sk);
|
|
sock_update_netprioidx(sk);
|
|
}
|
|
|
|
return sk;
|
|
}
|
|
EXPORT_SYMBOL(sk_alloc);
|
|
|
|
void sk_destruct(struct sock *sk)
|
|
{
|
|
struct sk_filter *filter;
|
|
|
|
if (sk->sk_destruct)
|
|
sk->sk_destruct(sk);
|
|
|
|
filter = rcu_dereference_check(sk->sk_filter,
|
|
atomic_read(&sk->sk_wmem_alloc) == 0);
|
|
if (filter) {
|
|
sk_filter_uncharge(sk, filter);
|
|
RCU_INIT_POINTER(sk->sk_filter, NULL);
|
|
}
|
|
|
|
sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
|
|
|
|
if (atomic_read(&sk->sk_omem_alloc))
|
|
pr_debug("%s: optmem leakage (%d bytes) detected\n",
|
|
__func__, atomic_read(&sk->sk_omem_alloc));
|
|
|
|
if (sk->sk_peer_cred)
|
|
put_cred(sk->sk_peer_cred);
|
|
put_pid(sk->sk_peer_pid);
|
|
if (likely(sk->sk_net_refcnt))
|
|
put_net(sock_net(sk));
|
|
sk_prot_free(sk->sk_prot_creator, sk);
|
|
}
|
|
|
|
static void __sk_free(struct sock *sk)
|
|
{
|
|
if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
|
|
sock_diag_broadcast_destroy(sk);
|
|
else
|
|
sk_destruct(sk);
|
|
}
|
|
|
|
void sk_free(struct sock *sk)
|
|
{
|
|
/*
|
|
* We subtract one from sk_wmem_alloc and can know if
|
|
* some packets are still in some tx queue.
|
|
* If not null, sock_wfree() will call __sk_free(sk) later
|
|
*/
|
|
if (atomic_dec_and_test(&sk->sk_wmem_alloc))
|
|
__sk_free(sk);
|
|
}
|
|
EXPORT_SYMBOL(sk_free);
|
|
|
|
static void sk_update_clone(const struct sock *sk, struct sock *newsk)
|
|
{
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
|
|
sock_update_memcg(newsk);
|
|
}
|
|
|
|
/**
|
|
* sk_clone_lock - clone a socket, and lock its clone
|
|
* @sk: the socket to clone
|
|
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
|
|
*
|
|
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
|
|
*/
|
|
struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
|
|
{
|
|
struct sock *newsk;
|
|
bool is_charged = true;
|
|
|
|
newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
|
|
if (newsk != NULL) {
|
|
struct sk_filter *filter;
|
|
|
|
sock_copy(newsk, sk);
|
|
|
|
/* SANITY */
|
|
get_net(sock_net(newsk));
|
|
sk_node_init(&newsk->sk_node);
|
|
sock_lock_init(newsk);
|
|
bh_lock_sock(newsk);
|
|
newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
|
|
newsk->sk_backlog.len = 0;
|
|
|
|
atomic_set(&newsk->sk_rmem_alloc, 0);
|
|
/*
|
|
* sk_wmem_alloc set to one (see sk_free() and sock_wfree())
|
|
*/
|
|
atomic_set(&newsk->sk_wmem_alloc, 1);
|
|
atomic_set(&newsk->sk_omem_alloc, 0);
|
|
skb_queue_head_init(&newsk->sk_receive_queue);
|
|
skb_queue_head_init(&newsk->sk_write_queue);
|
|
|
|
spin_lock_init(&newsk->sk_dst_lock);
|
|
rwlock_init(&newsk->sk_callback_lock);
|
|
lockdep_set_class_and_name(&newsk->sk_callback_lock,
|
|
af_callback_keys + newsk->sk_family,
|
|
af_family_clock_key_strings[newsk->sk_family]);
|
|
|
|
newsk->sk_dst_cache = NULL;
|
|
newsk->sk_wmem_queued = 0;
|
|
newsk->sk_forward_alloc = 0;
|
|
newsk->sk_send_head = NULL;
|
|
newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
|
|
|
|
sock_reset_flag(newsk, SOCK_DONE);
|
|
skb_queue_head_init(&newsk->sk_error_queue);
|
|
|
|
filter = rcu_dereference_protected(newsk->sk_filter, 1);
|
|
if (filter != NULL)
|
|
/* though it's an empty new sock, the charging may fail
|
|
* if sysctl_optmem_max was changed between creation of
|
|
* original socket and cloning
|
|
*/
|
|
is_charged = sk_filter_charge(newsk, filter);
|
|
|
|
if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
|
|
/* It is still raw copy of parent, so invalidate
|
|
* destructor and make plain sk_free() */
|
|
newsk->sk_destruct = NULL;
|
|
bh_unlock_sock(newsk);
|
|
sk_free(newsk);
|
|
newsk = NULL;
|
|
goto out;
|
|
}
|
|
|
|
newsk->sk_err = 0;
|
|
newsk->sk_priority = 0;
|
|
newsk->sk_incoming_cpu = raw_smp_processor_id();
|
|
atomic64_set(&newsk->sk_cookie, 0);
|
|
/*
|
|
* Before updating sk_refcnt, we must commit prior changes to memory
|
|
* (Documentation/RCU/rculist_nulls.txt for details)
|
|
*/
|
|
smp_wmb();
|
|
atomic_set(&newsk->sk_refcnt, 2);
|
|
|
|
/*
|
|
* Increment the counter in the same struct proto as the master
|
|
* sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
|
|
* is the same as sk->sk_prot->socks, as this field was copied
|
|
* with memcpy).
|
|
*
|
|
* This _changes_ the previous behaviour, where
|
|
* tcp_create_openreq_child always was incrementing the
|
|
* equivalent to tcp_prot->socks (inet_sock_nr), so this have
|
|
* to be taken into account in all callers. -acme
|
|
*/
|
|
sk_refcnt_debug_inc(newsk);
|
|
sk_set_socket(newsk, NULL);
|
|
newsk->sk_wq = NULL;
|
|
|
|
sk_update_clone(sk, newsk);
|
|
|
|
if (newsk->sk_prot->sockets_allocated)
|
|
sk_sockets_allocated_inc(newsk);
|
|
|
|
if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
|
|
net_enable_timestamp();
|
|
}
|
|
out:
|
|
return newsk;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_clone_lock);
|
|
|
|
void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
|
|
{
|
|
u32 max_segs = 1;
|
|
|
|
__sk_dst_set(sk, dst);
|
|
sk->sk_route_caps = dst->dev->features;
|
|
if (sk->sk_route_caps & NETIF_F_GSO)
|
|
sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
|
|
sk->sk_route_caps &= ~sk->sk_route_nocaps;
|
|
if (sk_can_gso(sk)) {
|
|
if (dst->header_len) {
|
|
sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
|
|
} else {
|
|
sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
|
|
sk->sk_gso_max_size = dst->dev->gso_max_size;
|
|
max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
|
|
}
|
|
}
|
|
sk->sk_gso_max_segs = max_segs;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_setup_caps);
|
|
|
|
/*
|
|
* Simple resource managers for sockets.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Write buffer destructor automatically called from kfree_skb.
|
|
*/
|
|
void sock_wfree(struct sk_buff *skb)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
unsigned int len = skb->truesize;
|
|
|
|
if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
|
|
/*
|
|
* Keep a reference on sk_wmem_alloc, this will be released
|
|
* after sk_write_space() call
|
|
*/
|
|
atomic_sub(len - 1, &sk->sk_wmem_alloc);
|
|
sk->sk_write_space(sk);
|
|
len = 1;
|
|
}
|
|
/*
|
|
* if sk_wmem_alloc reaches 0, we must finish what sk_free()
|
|
* could not do because of in-flight packets
|
|
*/
|
|
if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
|
|
__sk_free(sk);
|
|
}
|
|
EXPORT_SYMBOL(sock_wfree);
|
|
|
|
void skb_orphan_partial(struct sk_buff *skb)
|
|
{
|
|
/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
|
|
* so we do not completely orphan skb, but transfert all
|
|
* accounted bytes but one, to avoid unexpected reorders.
|
|
*/
|
|
if (skb->destructor == sock_wfree
|
|
#ifdef CONFIG_INET
|
|
|| skb->destructor == tcp_wfree
|
|
#endif
|
|
) {
|
|
atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
|
|
skb->truesize = 1;
|
|
} else {
|
|
skb_orphan(skb);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(skb_orphan_partial);
|
|
|
|
/*
|
|
* Read buffer destructor automatically called from kfree_skb.
|
|
*/
|
|
void sock_rfree(struct sk_buff *skb)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
unsigned int len = skb->truesize;
|
|
|
|
atomic_sub(len, &sk->sk_rmem_alloc);
|
|
sk_mem_uncharge(sk, len);
|
|
}
|
|
EXPORT_SYMBOL(sock_rfree);
|
|
|
|
/*
|
|
* Buffer destructor for skbs that are not used directly in read or write
|
|
* path, e.g. for error handler skbs. Automatically called from kfree_skb.
|
|
*/
|
|
void sock_efree(struct sk_buff *skb)
|
|
{
|
|
sock_put(skb->sk);
|
|
}
|
|
EXPORT_SYMBOL(sock_efree);
|
|
|
|
kuid_t sock_i_uid(struct sock *sk)
|
|
{
|
|
kuid_t uid;
|
|
|
|
read_lock_bh(&sk->sk_callback_lock);
|
|
uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
|
|
read_unlock_bh(&sk->sk_callback_lock);
|
|
return uid;
|
|
}
|
|
EXPORT_SYMBOL(sock_i_uid);
|
|
|
|
unsigned long sock_i_ino(struct sock *sk)
|
|
{
|
|
unsigned long ino;
|
|
|
|
read_lock_bh(&sk->sk_callback_lock);
|
|
ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
|
|
read_unlock_bh(&sk->sk_callback_lock);
|
|
return ino;
|
|
}
|
|
EXPORT_SYMBOL(sock_i_ino);
|
|
|
|
/*
|
|
* Allocate a skb from the socket's send buffer.
|
|
*/
|
|
struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
|
|
gfp_t priority)
|
|
{
|
|
if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
|
|
struct sk_buff *skb = alloc_skb(size, priority);
|
|
if (skb) {
|
|
skb_set_owner_w(skb, sk);
|
|
return skb;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(sock_wmalloc);
|
|
|
|
/*
|
|
* Allocate a memory block from the socket's option memory buffer.
|
|
*/
|
|
void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
|
|
{
|
|
if ((unsigned int)size <= sysctl_optmem_max &&
|
|
atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
|
|
void *mem;
|
|
/* First do the add, to avoid the race if kmalloc
|
|
* might sleep.
|
|
*/
|
|
atomic_add(size, &sk->sk_omem_alloc);
|
|
mem = kmalloc(size, priority);
|
|
if (mem)
|
|
return mem;
|
|
atomic_sub(size, &sk->sk_omem_alloc);
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(sock_kmalloc);
|
|
|
|
/* Free an option memory block. Note, we actually want the inline
|
|
* here as this allows gcc to detect the nullify and fold away the
|
|
* condition entirely.
|
|
*/
|
|
static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
|
|
const bool nullify)
|
|
{
|
|
if (WARN_ON_ONCE(!mem))
|
|
return;
|
|
if (nullify)
|
|
kzfree(mem);
|
|
else
|
|
kfree(mem);
|
|
atomic_sub(size, &sk->sk_omem_alloc);
|
|
}
|
|
|
|
void sock_kfree_s(struct sock *sk, void *mem, int size)
|
|
{
|
|
__sock_kfree_s(sk, mem, size, false);
|
|
}
|
|
EXPORT_SYMBOL(sock_kfree_s);
|
|
|
|
void sock_kzfree_s(struct sock *sk, void *mem, int size)
|
|
{
|
|
__sock_kfree_s(sk, mem, size, true);
|
|
}
|
|
EXPORT_SYMBOL(sock_kzfree_s);
|
|
|
|
/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
|
|
I think, these locks should be removed for datagram sockets.
|
|
*/
|
|
static long sock_wait_for_wmem(struct sock *sk, long timeo)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
|
|
for (;;) {
|
|
if (!timeo)
|
|
break;
|
|
if (signal_pending(current))
|
|
break;
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
|
|
if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
|
|
break;
|
|
if (sk->sk_shutdown & SEND_SHUTDOWN)
|
|
break;
|
|
if (sk->sk_err)
|
|
break;
|
|
timeo = schedule_timeout(timeo);
|
|
}
|
|
finish_wait(sk_sleep(sk), &wait);
|
|
return timeo;
|
|
}
|
|
|
|
|
|
/*
|
|
* Generic send/receive buffer handlers
|
|
*/
|
|
|
|
struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
|
|
unsigned long data_len, int noblock,
|
|
int *errcode, int max_page_order)
|
|
{
|
|
struct sk_buff *skb;
|
|
long timeo;
|
|
int err;
|
|
|
|
timeo = sock_sndtimeo(sk, noblock);
|
|
for (;;) {
|
|
err = sock_error(sk);
|
|
if (err != 0)
|
|
goto failure;
|
|
|
|
err = -EPIPE;
|
|
if (sk->sk_shutdown & SEND_SHUTDOWN)
|
|
goto failure;
|
|
|
|
if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
|
|
break;
|
|
|
|
set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
err = -EAGAIN;
|
|
if (!timeo)
|
|
goto failure;
|
|
if (signal_pending(current))
|
|
goto interrupted;
|
|
timeo = sock_wait_for_wmem(sk, timeo);
|
|
}
|
|
skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
|
|
errcode, sk->sk_allocation);
|
|
if (skb)
|
|
skb_set_owner_w(skb, sk);
|
|
return skb;
|
|
|
|
interrupted:
|
|
err = sock_intr_errno(timeo);
|
|
failure:
|
|
*errcode = err;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(sock_alloc_send_pskb);
|
|
|
|
struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
|
|
int noblock, int *errcode)
|
|
{
|
|
return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
|
|
}
|
|
EXPORT_SYMBOL(sock_alloc_send_skb);
|
|
|
|
/* On 32bit arches, an skb frag is limited to 2^15 */
|
|
#define SKB_FRAG_PAGE_ORDER get_order(32768)
|
|
|
|
/**
|
|
* skb_page_frag_refill - check that a page_frag contains enough room
|
|
* @sz: minimum size of the fragment we want to get
|
|
* @pfrag: pointer to page_frag
|
|
* @gfp: priority for memory allocation
|
|
*
|
|
* Note: While this allocator tries to use high order pages, there is
|
|
* no guarantee that allocations succeed. Therefore, @sz MUST be
|
|
* less or equal than PAGE_SIZE.
|
|
*/
|
|
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
|
|
{
|
|
if (pfrag->page) {
|
|
if (atomic_read(&pfrag->page->_count) == 1) {
|
|
pfrag->offset = 0;
|
|
return true;
|
|
}
|
|
if (pfrag->offset + sz <= pfrag->size)
|
|
return true;
|
|
put_page(pfrag->page);
|
|
}
|
|
|
|
pfrag->offset = 0;
|
|
if (SKB_FRAG_PAGE_ORDER) {
|
|
pfrag->page = alloc_pages((gfp & ~__GFP_WAIT) | __GFP_COMP |
|
|
__GFP_NOWARN | __GFP_NORETRY,
|
|
SKB_FRAG_PAGE_ORDER);
|
|
if (likely(pfrag->page)) {
|
|
pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
|
|
return true;
|
|
}
|
|
}
|
|
pfrag->page = alloc_page(gfp);
|
|
if (likely(pfrag->page)) {
|
|
pfrag->size = PAGE_SIZE;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(skb_page_frag_refill);
|
|
|
|
bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
|
|
{
|
|
if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
|
|
return true;
|
|
|
|
sk_enter_memory_pressure(sk);
|
|
sk_stream_moderate_sndbuf(sk);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(sk_page_frag_refill);
|
|
|
|
static void __lock_sock(struct sock *sk)
|
|
__releases(&sk->sk_lock.slock)
|
|
__acquires(&sk->sk_lock.slock)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
for (;;) {
|
|
prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_bh(&sk->sk_lock.slock);
|
|
schedule();
|
|
spin_lock_bh(&sk->sk_lock.slock);
|
|
if (!sock_owned_by_user(sk))
|
|
break;
|
|
}
|
|
finish_wait(&sk->sk_lock.wq, &wait);
|
|
}
|
|
|
|
static void __release_sock(struct sock *sk)
|
|
__releases(&sk->sk_lock.slock)
|
|
__acquires(&sk->sk_lock.slock)
|
|
{
|
|
struct sk_buff *skb = sk->sk_backlog.head;
|
|
|
|
do {
|
|
sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
|
|
bh_unlock_sock(sk);
|
|
|
|
do {
|
|
struct sk_buff *next = skb->next;
|
|
|
|
prefetch(next);
|
|
WARN_ON_ONCE(skb_dst_is_noref(skb));
|
|
skb->next = NULL;
|
|
sk_backlog_rcv(sk, skb);
|
|
|
|
/*
|
|
* We are in process context here with softirqs
|
|
* disabled, use cond_resched_softirq() to preempt.
|
|
* This is safe to do because we've taken the backlog
|
|
* queue private:
|
|
*/
|
|
cond_resched_softirq();
|
|
|
|
skb = next;
|
|
} while (skb != NULL);
|
|
|
|
bh_lock_sock(sk);
|
|
} while ((skb = sk->sk_backlog.head) != NULL);
|
|
|
|
/*
|
|
* Doing the zeroing here guarantee we can not loop forever
|
|
* while a wild producer attempts to flood us.
|
|
*/
|
|
sk->sk_backlog.len = 0;
|
|
}
|
|
|
|
/**
|
|
* sk_wait_data - wait for data to arrive at sk_receive_queue
|
|
* @sk: sock to wait on
|
|
* @timeo: for how long
|
|
*
|
|
* Now socket state including sk->sk_err is changed only under lock,
|
|
* hence we may omit checks after joining wait queue.
|
|
* We check receive queue before schedule() only as optimization;
|
|
* it is very likely that release_sock() added new data.
|
|
*/
|
|
int sk_wait_data(struct sock *sk, long *timeo)
|
|
{
|
|
int rc;
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
|
|
set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
|
|
rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
|
|
clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
|
|
finish_wait(sk_sleep(sk), &wait);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(sk_wait_data);
|
|
|
|
/**
|
|
* __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
|
|
* @sk: socket
|
|
* @size: memory size to allocate
|
|
* @kind: allocation type
|
|
*
|
|
* If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
|
|
* rmem allocation. This function assumes that protocols which have
|
|
* memory_pressure use sk_wmem_queued as write buffer accounting.
|
|
*/
|
|
int __sk_mem_schedule(struct sock *sk, int size, int kind)
|
|
{
|
|
struct proto *prot = sk->sk_prot;
|
|
int amt = sk_mem_pages(size);
|
|
long allocated;
|
|
int parent_status = UNDER_LIMIT;
|
|
|
|
sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
|
|
|
|
allocated = sk_memory_allocated_add(sk, amt, &parent_status);
|
|
|
|
/* Under limit. */
|
|
if (parent_status == UNDER_LIMIT &&
|
|
allocated <= sk_prot_mem_limits(sk, 0)) {
|
|
sk_leave_memory_pressure(sk);
|
|
return 1;
|
|
}
|
|
|
|
/* Under pressure. (we or our parents) */
|
|
if ((parent_status > SOFT_LIMIT) ||
|
|
allocated > sk_prot_mem_limits(sk, 1))
|
|
sk_enter_memory_pressure(sk);
|
|
|
|
/* Over hard limit (we or our parents) */
|
|
if ((parent_status == OVER_LIMIT) ||
|
|
(allocated > sk_prot_mem_limits(sk, 2)))
|
|
goto suppress_allocation;
|
|
|
|
/* guarantee minimum buffer size under pressure */
|
|
if (kind == SK_MEM_RECV) {
|
|
if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
|
|
return 1;
|
|
|
|
} else { /* SK_MEM_SEND */
|
|
if (sk->sk_type == SOCK_STREAM) {
|
|
if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
|
|
return 1;
|
|
} else if (atomic_read(&sk->sk_wmem_alloc) <
|
|
prot->sysctl_wmem[0])
|
|
return 1;
|
|
}
|
|
|
|
if (sk_has_memory_pressure(sk)) {
|
|
int alloc;
|
|
|
|
if (!sk_under_memory_pressure(sk))
|
|
return 1;
|
|
alloc = sk_sockets_allocated_read_positive(sk);
|
|
if (sk_prot_mem_limits(sk, 2) > alloc *
|
|
sk_mem_pages(sk->sk_wmem_queued +
|
|
atomic_read(&sk->sk_rmem_alloc) +
|
|
sk->sk_forward_alloc))
|
|
return 1;
|
|
}
|
|
|
|
suppress_allocation:
|
|
|
|
if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
|
|
sk_stream_moderate_sndbuf(sk);
|
|
|
|
/* Fail only if socket is _under_ its sndbuf.
|
|
* In this case we cannot block, so that we have to fail.
|
|
*/
|
|
if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
|
|
return 1;
|
|
}
|
|
|
|
trace_sock_exceed_buf_limit(sk, prot, allocated);
|
|
|
|
/* Alas. Undo changes. */
|
|
sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
|
|
|
|
sk_memory_allocated_sub(sk, amt);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__sk_mem_schedule);
|
|
|
|
/**
|
|
* __sk_reclaim - reclaim memory_allocated
|
|
* @sk: socket
|
|
* @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
|
|
*/
|
|
void __sk_mem_reclaim(struct sock *sk, int amount)
|
|
{
|
|
amount >>= SK_MEM_QUANTUM_SHIFT;
|
|
sk_memory_allocated_sub(sk, amount);
|
|
sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
|
|
|
|
if (sk_under_memory_pressure(sk) &&
|
|
(sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
|
|
sk_leave_memory_pressure(sk);
|
|
}
|
|
EXPORT_SYMBOL(__sk_mem_reclaim);
|
|
|
|
|
|
/*
|
|
* Set of default routines for initialising struct proto_ops when
|
|
* the protocol does not support a particular function. In certain
|
|
* cases where it makes no sense for a protocol to have a "do nothing"
|
|
* function, some default processing is provided.
|
|
*/
|
|
|
|
int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_bind);
|
|
|
|
int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
|
|
int len, int flags)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_connect);
|
|
|
|
int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_socketpair);
|
|
|
|
int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_accept);
|
|
|
|
int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
|
|
int *len, int peer)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_getname);
|
|
|
|
unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
|
|
{
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_poll);
|
|
|
|
int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_ioctl);
|
|
|
|
int sock_no_listen(struct socket *sock, int backlog)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_listen);
|
|
|
|
int sock_no_shutdown(struct socket *sock, int how)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_shutdown);
|
|
|
|
int sock_no_setsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, unsigned int optlen)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_setsockopt);
|
|
|
|
int sock_no_getsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_getsockopt);
|
|
|
|
int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_sendmsg);
|
|
|
|
int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
|
|
int flags)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_recvmsg);
|
|
|
|
int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
|
|
{
|
|
/* Mirror missing mmap method error code */
|
|
return -ENODEV;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_mmap);
|
|
|
|
ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
|
|
{
|
|
ssize_t res;
|
|
struct msghdr msg = {.msg_flags = flags};
|
|
struct kvec iov;
|
|
char *kaddr = kmap(page);
|
|
iov.iov_base = kaddr + offset;
|
|
iov.iov_len = size;
|
|
res = kernel_sendmsg(sock, &msg, &iov, 1, size);
|
|
kunmap(page);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(sock_no_sendpage);
|
|
|
|
/*
|
|
* Default Socket Callbacks
|
|
*/
|
|
|
|
static void sock_def_wakeup(struct sock *sk)
|
|
{
|
|
struct socket_wq *wq;
|
|
|
|
rcu_read_lock();
|
|
wq = rcu_dereference(sk->sk_wq);
|
|
if (wq_has_sleeper(wq))
|
|
wake_up_interruptible_all(&wq->wait);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void sock_def_error_report(struct sock *sk)
|
|
{
|
|
struct socket_wq *wq;
|
|
|
|
rcu_read_lock();
|
|
wq = rcu_dereference(sk->sk_wq);
|
|
if (wq_has_sleeper(wq))
|
|
wake_up_interruptible_poll(&wq->wait, POLLERR);
|
|
sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void sock_def_readable(struct sock *sk)
|
|
{
|
|
struct socket_wq *wq;
|
|
|
|
rcu_read_lock();
|
|
wq = rcu_dereference(sk->sk_wq);
|
|
if (wq_has_sleeper(wq))
|
|
wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
|
|
POLLRDNORM | POLLRDBAND);
|
|
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void sock_def_write_space(struct sock *sk)
|
|
{
|
|
struct socket_wq *wq;
|
|
|
|
rcu_read_lock();
|
|
|
|
/* Do not wake up a writer until he can make "significant"
|
|
* progress. --DaveM
|
|
*/
|
|
if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
|
|
wq = rcu_dereference(sk->sk_wq);
|
|
if (wq_has_sleeper(wq))
|
|
wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
|
|
POLLWRNORM | POLLWRBAND);
|
|
|
|
/* Should agree with poll, otherwise some programs break */
|
|
if (sock_writeable(sk))
|
|
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void sock_def_destruct(struct sock *sk)
|
|
{
|
|
}
|
|
|
|
void sk_send_sigurg(struct sock *sk)
|
|
{
|
|
if (sk->sk_socket && sk->sk_socket->file)
|
|
if (send_sigurg(&sk->sk_socket->file->f_owner))
|
|
sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
|
|
}
|
|
EXPORT_SYMBOL(sk_send_sigurg);
|
|
|
|
void sk_reset_timer(struct sock *sk, struct timer_list* timer,
|
|
unsigned long expires)
|
|
{
|
|
if (!mod_timer(timer, expires))
|
|
sock_hold(sk);
|
|
}
|
|
EXPORT_SYMBOL(sk_reset_timer);
|
|
|
|
void sk_stop_timer(struct sock *sk, struct timer_list* timer)
|
|
{
|
|
if (del_timer(timer))
|
|
__sock_put(sk);
|
|
}
|
|
EXPORT_SYMBOL(sk_stop_timer);
|
|
|
|
void sock_init_data(struct socket *sock, struct sock *sk)
|
|
{
|
|
skb_queue_head_init(&sk->sk_receive_queue);
|
|
skb_queue_head_init(&sk->sk_write_queue);
|
|
skb_queue_head_init(&sk->sk_error_queue);
|
|
|
|
sk->sk_send_head = NULL;
|
|
|
|
init_timer(&sk->sk_timer);
|
|
|
|
sk->sk_allocation = GFP_KERNEL;
|
|
sk->sk_rcvbuf = sysctl_rmem_default;
|
|
sk->sk_sndbuf = sysctl_wmem_default;
|
|
sk->sk_state = TCP_CLOSE;
|
|
sk_set_socket(sk, sock);
|
|
|
|
sock_set_flag(sk, SOCK_ZAPPED);
|
|
|
|
if (sock) {
|
|
sk->sk_type = sock->type;
|
|
sk->sk_wq = sock->wq;
|
|
sock->sk = sk;
|
|
} else
|
|
sk->sk_wq = NULL;
|
|
|
|
spin_lock_init(&sk->sk_dst_lock);
|
|
rwlock_init(&sk->sk_callback_lock);
|
|
lockdep_set_class_and_name(&sk->sk_callback_lock,
|
|
af_callback_keys + sk->sk_family,
|
|
af_family_clock_key_strings[sk->sk_family]);
|
|
|
|
sk->sk_state_change = sock_def_wakeup;
|
|
sk->sk_data_ready = sock_def_readable;
|
|
sk->sk_write_space = sock_def_write_space;
|
|
sk->sk_error_report = sock_def_error_report;
|
|
sk->sk_destruct = sock_def_destruct;
|
|
|
|
sk->sk_frag.page = NULL;
|
|
sk->sk_frag.offset = 0;
|
|
sk->sk_peek_off = -1;
|
|
|
|
sk->sk_peer_pid = NULL;
|
|
sk->sk_peer_cred = NULL;
|
|
sk->sk_write_pending = 0;
|
|
sk->sk_rcvlowat = 1;
|
|
sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
|
|
sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
|
|
|
|
sk->sk_stamp = ktime_set(-1L, 0);
|
|
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
sk->sk_napi_id = 0;
|
|
sk->sk_ll_usec = sysctl_net_busy_read;
|
|
#endif
|
|
|
|
sk->sk_max_pacing_rate = ~0U;
|
|
sk->sk_pacing_rate = ~0U;
|
|
/*
|
|
* Before updating sk_refcnt, we must commit prior changes to memory
|
|
* (Documentation/RCU/rculist_nulls.txt for details)
|
|
*/
|
|
smp_wmb();
|
|
atomic_set(&sk->sk_refcnt, 1);
|
|
atomic_set(&sk->sk_drops, 0);
|
|
}
|
|
EXPORT_SYMBOL(sock_init_data);
|
|
|
|
void lock_sock_nested(struct sock *sk, int subclass)
|
|
{
|
|
might_sleep();
|
|
spin_lock_bh(&sk->sk_lock.slock);
|
|
if (sk->sk_lock.owned)
|
|
__lock_sock(sk);
|
|
sk->sk_lock.owned = 1;
|
|
spin_unlock(&sk->sk_lock.slock);
|
|
/*
|
|
* The sk_lock has mutex_lock() semantics here:
|
|
*/
|
|
mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
|
|
local_bh_enable();
|
|
}
|
|
EXPORT_SYMBOL(lock_sock_nested);
|
|
|
|
void release_sock(struct sock *sk)
|
|
{
|
|
/*
|
|
* The sk_lock has mutex_unlock() semantics:
|
|
*/
|
|
mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
|
|
|
|
spin_lock_bh(&sk->sk_lock.slock);
|
|
if (sk->sk_backlog.tail)
|
|
__release_sock(sk);
|
|
|
|
/* Warning : release_cb() might need to release sk ownership,
|
|
* ie call sock_release_ownership(sk) before us.
|
|
*/
|
|
if (sk->sk_prot->release_cb)
|
|
sk->sk_prot->release_cb(sk);
|
|
|
|
sock_release_ownership(sk);
|
|
if (waitqueue_active(&sk->sk_lock.wq))
|
|
wake_up(&sk->sk_lock.wq);
|
|
spin_unlock_bh(&sk->sk_lock.slock);
|
|
}
|
|
EXPORT_SYMBOL(release_sock);
|
|
|
|
/**
|
|
* lock_sock_fast - fast version of lock_sock
|
|
* @sk: socket
|
|
*
|
|
* This version should be used for very small section, where process wont block
|
|
* return false if fast path is taken
|
|
* sk_lock.slock locked, owned = 0, BH disabled
|
|
* return true if slow path is taken
|
|
* sk_lock.slock unlocked, owned = 1, BH enabled
|
|
*/
|
|
bool lock_sock_fast(struct sock *sk)
|
|
{
|
|
might_sleep();
|
|
spin_lock_bh(&sk->sk_lock.slock);
|
|
|
|
if (!sk->sk_lock.owned)
|
|
/*
|
|
* Note : We must disable BH
|
|
*/
|
|
return false;
|
|
|
|
__lock_sock(sk);
|
|
sk->sk_lock.owned = 1;
|
|
spin_unlock(&sk->sk_lock.slock);
|
|
/*
|
|
* The sk_lock has mutex_lock() semantics here:
|
|
*/
|
|
mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
|
|
local_bh_enable();
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(lock_sock_fast);
|
|
|
|
int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
|
|
{
|
|
struct timeval tv;
|
|
if (!sock_flag(sk, SOCK_TIMESTAMP))
|
|
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
|
|
tv = ktime_to_timeval(sk->sk_stamp);
|
|
if (tv.tv_sec == -1)
|
|
return -ENOENT;
|
|
if (tv.tv_sec == 0) {
|
|
sk->sk_stamp = ktime_get_real();
|
|
tv = ktime_to_timeval(sk->sk_stamp);
|
|
}
|
|
return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
|
|
}
|
|
EXPORT_SYMBOL(sock_get_timestamp);
|
|
|
|
int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
|
|
{
|
|
struct timespec ts;
|
|
if (!sock_flag(sk, SOCK_TIMESTAMP))
|
|
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
|
|
ts = ktime_to_timespec(sk->sk_stamp);
|
|
if (ts.tv_sec == -1)
|
|
return -ENOENT;
|
|
if (ts.tv_sec == 0) {
|
|
sk->sk_stamp = ktime_get_real();
|
|
ts = ktime_to_timespec(sk->sk_stamp);
|
|
}
|
|
return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
|
|
}
|
|
EXPORT_SYMBOL(sock_get_timestampns);
|
|
|
|
void sock_enable_timestamp(struct sock *sk, int flag)
|
|
{
|
|
if (!sock_flag(sk, flag)) {
|
|
unsigned long previous_flags = sk->sk_flags;
|
|
|
|
sock_set_flag(sk, flag);
|
|
/*
|
|
* we just set one of the two flags which require net
|
|
* time stamping, but time stamping might have been on
|
|
* already because of the other one
|
|
*/
|
|
if (!(previous_flags & SK_FLAGS_TIMESTAMP))
|
|
net_enable_timestamp();
|
|
}
|
|
}
|
|
|
|
int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
|
|
int level, int type)
|
|
{
|
|
struct sock_exterr_skb *serr;
|
|
struct sk_buff *skb;
|
|
int copied, err;
|
|
|
|
err = -EAGAIN;
|
|
skb = sock_dequeue_err_skb(sk);
|
|
if (skb == NULL)
|
|
goto out;
|
|
|
|
copied = skb->len;
|
|
if (copied > len) {
|
|
msg->msg_flags |= MSG_TRUNC;
|
|
copied = len;
|
|
}
|
|
err = skb_copy_datagram_msg(skb, 0, msg, copied);
|
|
if (err)
|
|
goto out_free_skb;
|
|
|
|
sock_recv_timestamp(msg, sk, skb);
|
|
|
|
serr = SKB_EXT_ERR(skb);
|
|
put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
|
|
|
|
msg->msg_flags |= MSG_ERRQUEUE;
|
|
err = copied;
|
|
|
|
out_free_skb:
|
|
kfree_skb(skb);
|
|
out:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(sock_recv_errqueue);
|
|
|
|
/*
|
|
* Get a socket option on an socket.
|
|
*
|
|
* FIX: POSIX 1003.1g is very ambiguous here. It states that
|
|
* asynchronous errors should be reported by getsockopt. We assume
|
|
* this means if you specify SO_ERROR (otherwise whats the point of it).
|
|
*/
|
|
int sock_common_getsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
|
|
return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
EXPORT_SYMBOL(sock_common_getsockopt);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
|
|
if (sk->sk_prot->compat_getsockopt != NULL)
|
|
return sk->sk_prot->compat_getsockopt(sk, level, optname,
|
|
optval, optlen);
|
|
return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
EXPORT_SYMBOL(compat_sock_common_getsockopt);
|
|
#endif
|
|
|
|
int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
|
|
int flags)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
int addr_len = 0;
|
|
int err;
|
|
|
|
err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
|
|
flags & ~MSG_DONTWAIT, &addr_len);
|
|
if (err >= 0)
|
|
msg->msg_namelen = addr_len;
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(sock_common_recvmsg);
|
|
|
|
/*
|
|
* Set socket options on an inet socket.
|
|
*/
|
|
int sock_common_setsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, unsigned int optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
|
|
return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
EXPORT_SYMBOL(sock_common_setsockopt);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, unsigned int optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
|
|
if (sk->sk_prot->compat_setsockopt != NULL)
|
|
return sk->sk_prot->compat_setsockopt(sk, level, optname,
|
|
optval, optlen);
|
|
return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
|
|
}
|
|
EXPORT_SYMBOL(compat_sock_common_setsockopt);
|
|
#endif
|
|
|
|
void sk_common_release(struct sock *sk)
|
|
{
|
|
if (sk->sk_prot->destroy)
|
|
sk->sk_prot->destroy(sk);
|
|
|
|
/*
|
|
* Observation: when sock_common_release is called, processes have
|
|
* no access to socket. But net still has.
|
|
* Step one, detach it from networking:
|
|
*
|
|
* A. Remove from hash tables.
|
|
*/
|
|
|
|
sk->sk_prot->unhash(sk);
|
|
|
|
/*
|
|
* In this point socket cannot receive new packets, but it is possible
|
|
* that some packets are in flight because some CPU runs receiver and
|
|
* did hash table lookup before we unhashed socket. They will achieve
|
|
* receive queue and will be purged by socket destructor.
|
|
*
|
|
* Also we still have packets pending on receive queue and probably,
|
|
* our own packets waiting in device queues. sock_destroy will drain
|
|
* receive queue, but transmitted packets will delay socket destruction
|
|
* until the last reference will be released.
|
|
*/
|
|
|
|
sock_orphan(sk);
|
|
|
|
xfrm_sk_free_policy(sk);
|
|
|
|
sk_refcnt_debug_release(sk);
|
|
|
|
if (sk->sk_frag.page) {
|
|
put_page(sk->sk_frag.page);
|
|
sk->sk_frag.page = NULL;
|
|
}
|
|
|
|
sock_put(sk);
|
|
}
|
|
EXPORT_SYMBOL(sk_common_release);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
#define PROTO_INUSE_NR 64 /* should be enough for the first time */
|
|
struct prot_inuse {
|
|
int val[PROTO_INUSE_NR];
|
|
};
|
|
|
|
static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
|
|
|
|
#ifdef CONFIG_NET_NS
|
|
void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
|
|
{
|
|
__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
|
|
|
|
int sock_prot_inuse_get(struct net *net, struct proto *prot)
|
|
{
|
|
int cpu, idx = prot->inuse_idx;
|
|
int res = 0;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
|
|
|
|
return res >= 0 ? res : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
|
|
|
|
static int __net_init sock_inuse_init_net(struct net *net)
|
|
{
|
|
net->core.inuse = alloc_percpu(struct prot_inuse);
|
|
return net->core.inuse ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static void __net_exit sock_inuse_exit_net(struct net *net)
|
|
{
|
|
free_percpu(net->core.inuse);
|
|
}
|
|
|
|
static struct pernet_operations net_inuse_ops = {
|
|
.init = sock_inuse_init_net,
|
|
.exit = sock_inuse_exit_net,
|
|
};
|
|
|
|
static __init int net_inuse_init(void)
|
|
{
|
|
if (register_pernet_subsys(&net_inuse_ops))
|
|
panic("Cannot initialize net inuse counters");
|
|
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(net_inuse_init);
|
|
#else
|
|
static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
|
|
|
|
void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
|
|
{
|
|
__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
|
|
|
|
int sock_prot_inuse_get(struct net *net, struct proto *prot)
|
|
{
|
|
int cpu, idx = prot->inuse_idx;
|
|
int res = 0;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
res += per_cpu(prot_inuse, cpu).val[idx];
|
|
|
|
return res >= 0 ? res : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
|
|
#endif
|
|
|
|
static void assign_proto_idx(struct proto *prot)
|
|
{
|
|
prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
|
|
|
|
if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
|
|
pr_err("PROTO_INUSE_NR exhausted\n");
|
|
return;
|
|
}
|
|
|
|
set_bit(prot->inuse_idx, proto_inuse_idx);
|
|
}
|
|
|
|
static void release_proto_idx(struct proto *prot)
|
|
{
|
|
if (prot->inuse_idx != PROTO_INUSE_NR - 1)
|
|
clear_bit(prot->inuse_idx, proto_inuse_idx);
|
|
}
|
|
#else
|
|
static inline void assign_proto_idx(struct proto *prot)
|
|
{
|
|
}
|
|
|
|
static inline void release_proto_idx(struct proto *prot)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
|
|
{
|
|
if (!rsk_prot)
|
|
return;
|
|
kfree(rsk_prot->slab_name);
|
|
rsk_prot->slab_name = NULL;
|
|
if (rsk_prot->slab) {
|
|
kmem_cache_destroy(rsk_prot->slab);
|
|
rsk_prot->slab = NULL;
|
|
}
|
|
}
|
|
|
|
static int req_prot_init(const struct proto *prot)
|
|
{
|
|
struct request_sock_ops *rsk_prot = prot->rsk_prot;
|
|
|
|
if (!rsk_prot)
|
|
return 0;
|
|
|
|
rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
|
|
prot->name);
|
|
if (!rsk_prot->slab_name)
|
|
return -ENOMEM;
|
|
|
|
rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
|
|
rsk_prot->obj_size, 0,
|
|
0, NULL);
|
|
|
|
if (!rsk_prot->slab) {
|
|
pr_crit("%s: Can't create request sock SLAB cache!\n",
|
|
prot->name);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int proto_register(struct proto *prot, int alloc_slab)
|
|
{
|
|
if (alloc_slab) {
|
|
prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
|
|
SLAB_HWCACHE_ALIGN | prot->slab_flags,
|
|
NULL);
|
|
|
|
if (prot->slab == NULL) {
|
|
pr_crit("%s: Can't create sock SLAB cache!\n",
|
|
prot->name);
|
|
goto out;
|
|
}
|
|
|
|
if (req_prot_init(prot))
|
|
goto out_free_request_sock_slab;
|
|
|
|
if (prot->twsk_prot != NULL) {
|
|
prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
|
|
|
|
if (prot->twsk_prot->twsk_slab_name == NULL)
|
|
goto out_free_request_sock_slab;
|
|
|
|
prot->twsk_prot->twsk_slab =
|
|
kmem_cache_create(prot->twsk_prot->twsk_slab_name,
|
|
prot->twsk_prot->twsk_obj_size,
|
|
0,
|
|
prot->slab_flags,
|
|
NULL);
|
|
if (prot->twsk_prot->twsk_slab == NULL)
|
|
goto out_free_timewait_sock_slab_name;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&proto_list_mutex);
|
|
list_add(&prot->node, &proto_list);
|
|
assign_proto_idx(prot);
|
|
mutex_unlock(&proto_list_mutex);
|
|
return 0;
|
|
|
|
out_free_timewait_sock_slab_name:
|
|
kfree(prot->twsk_prot->twsk_slab_name);
|
|
out_free_request_sock_slab:
|
|
req_prot_cleanup(prot->rsk_prot);
|
|
|
|
kmem_cache_destroy(prot->slab);
|
|
prot->slab = NULL;
|
|
out:
|
|
return -ENOBUFS;
|
|
}
|
|
EXPORT_SYMBOL(proto_register);
|
|
|
|
void proto_unregister(struct proto *prot)
|
|
{
|
|
mutex_lock(&proto_list_mutex);
|
|
release_proto_idx(prot);
|
|
list_del(&prot->node);
|
|
mutex_unlock(&proto_list_mutex);
|
|
|
|
if (prot->slab != NULL) {
|
|
kmem_cache_destroy(prot->slab);
|
|
prot->slab = NULL;
|
|
}
|
|
|
|
req_prot_cleanup(prot->rsk_prot);
|
|
|
|
if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
|
|
kmem_cache_destroy(prot->twsk_prot->twsk_slab);
|
|
kfree(prot->twsk_prot->twsk_slab_name);
|
|
prot->twsk_prot->twsk_slab = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(proto_unregister);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
|
|
__acquires(proto_list_mutex)
|
|
{
|
|
mutex_lock(&proto_list_mutex);
|
|
return seq_list_start_head(&proto_list, *pos);
|
|
}
|
|
|
|
static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
return seq_list_next(v, &proto_list, pos);
|
|
}
|
|
|
|
static void proto_seq_stop(struct seq_file *seq, void *v)
|
|
__releases(proto_list_mutex)
|
|
{
|
|
mutex_unlock(&proto_list_mutex);
|
|
}
|
|
|
|
static char proto_method_implemented(const void *method)
|
|
{
|
|
return method == NULL ? 'n' : 'y';
|
|
}
|
|
static long sock_prot_memory_allocated(struct proto *proto)
|
|
{
|
|
return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
|
|
}
|
|
|
|
static char *sock_prot_memory_pressure(struct proto *proto)
|
|
{
|
|
return proto->memory_pressure != NULL ?
|
|
proto_memory_pressure(proto) ? "yes" : "no" : "NI";
|
|
}
|
|
|
|
static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
|
|
{
|
|
|
|
seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
|
|
"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
|
|
proto->name,
|
|
proto->obj_size,
|
|
sock_prot_inuse_get(seq_file_net(seq), proto),
|
|
sock_prot_memory_allocated(proto),
|
|
sock_prot_memory_pressure(proto),
|
|
proto->max_header,
|
|
proto->slab == NULL ? "no" : "yes",
|
|
module_name(proto->owner),
|
|
proto_method_implemented(proto->close),
|
|
proto_method_implemented(proto->connect),
|
|
proto_method_implemented(proto->disconnect),
|
|
proto_method_implemented(proto->accept),
|
|
proto_method_implemented(proto->ioctl),
|
|
proto_method_implemented(proto->init),
|
|
proto_method_implemented(proto->destroy),
|
|
proto_method_implemented(proto->shutdown),
|
|
proto_method_implemented(proto->setsockopt),
|
|
proto_method_implemented(proto->getsockopt),
|
|
proto_method_implemented(proto->sendmsg),
|
|
proto_method_implemented(proto->recvmsg),
|
|
proto_method_implemented(proto->sendpage),
|
|
proto_method_implemented(proto->bind),
|
|
proto_method_implemented(proto->backlog_rcv),
|
|
proto_method_implemented(proto->hash),
|
|
proto_method_implemented(proto->unhash),
|
|
proto_method_implemented(proto->get_port),
|
|
proto_method_implemented(proto->enter_memory_pressure));
|
|
}
|
|
|
|
static int proto_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
if (v == &proto_list)
|
|
seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
|
|
"protocol",
|
|
"size",
|
|
"sockets",
|
|
"memory",
|
|
"press",
|
|
"maxhdr",
|
|
"slab",
|
|
"module",
|
|
"cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
|
|
else
|
|
proto_seq_printf(seq, list_entry(v, struct proto, node));
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations proto_seq_ops = {
|
|
.start = proto_seq_start,
|
|
.next = proto_seq_next,
|
|
.stop = proto_seq_stop,
|
|
.show = proto_seq_show,
|
|
};
|
|
|
|
static int proto_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open_net(inode, file, &proto_seq_ops,
|
|
sizeof(struct seq_net_private));
|
|
}
|
|
|
|
static const struct file_operations proto_seq_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = proto_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_net,
|
|
};
|
|
|
|
static __net_init int proto_init_net(struct net *net)
|
|
{
|
|
if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __net_exit void proto_exit_net(struct net *net)
|
|
{
|
|
remove_proc_entry("protocols", net->proc_net);
|
|
}
|
|
|
|
|
|
static __net_initdata struct pernet_operations proto_net_ops = {
|
|
.init = proto_init_net,
|
|
.exit = proto_exit_net,
|
|
};
|
|
|
|
static int __init proto_init(void)
|
|
{
|
|
return register_pernet_subsys(&proto_net_ops);
|
|
}
|
|
|
|
subsys_initcall(proto_init);
|
|
|
|
#endif /* PROC_FS */
|