WSJT-X/lib/jt9.f90

374 lines
14 KiB
Fortran
Raw Normal View History

program jt9
! Decoder for JT9. Can run stand-alone, reading data from *.wav files;
! or as the back end of wsjt-x, with data placed in a shared memory region.
use options
use prog_args
use, intrinsic :: iso_c_binding
use FFTW3
Make Fortran profiling timer function a callback with a default null implementation Groundwork for calling the decoders directly from C/C++ threads. To access the timer module timer_module must now be used. Instrumented code need only use the module function 'timer' which is now a procedure pointer that is guaranteed to be associated (unless null() is assigned to it, which should not be done). The default behaviour of 'timer' is to do nothing. If a Fortran program wishes to profile code it should now use the timer_impl module which contains a default timer implementation. The main program should call 'init_timer([filename])' before using 'timer' or calling routines that are instrumented. If 'init_timer([filename])'. If it is called then an optional file name may be provided with 'timer.out' being used as a default. The procedure 'fini_timer()' may be called to close the file. The default timer implementation is thread safe if used with OpenMP multi-threaded code so long as the OpenMP thread team is given the copyin(/timer_private/) attribute for correct operation. The common block /timer_private/ should be included for OpenMP use by including the file 'timer_common.inc'. The module 'lib/timer_C_wrapper.f90' provides a Fortran wrapper along with 'init' and 'fini' subroutines which allow a C/C++ application to call timer instrumented Fortran code and for it to receive callbacks of 'timer()' subroutine invocations. No C/C++ timer implementation is provided at this stage. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6320 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-12-27 10:40:57 -05:00
use timer_module, only: timer
use timer_impl, only: init_timer, fini_timer
use readwav
include 'jt9com.f90'
integer*2 id2a(180000)
integer(C_INT) iret
type(wav_header) wav
real*4 s(NSMAX)
real*8 TRperiod
character c
character(len=500) optarg, infile
character wisfile*80
!### ndepth was defined as 60001. Why???
integer :: arglen,stat,offset,remain,mode=0,flow=200,fsplit=2700, &
fhigh=4000,nrxfreq=1500,ndepth=1,nexp_decode=0,nQSOProg=0
logical :: read_files = .true., tx9 = .false., display_help = .false., &
bLowSidelobes = .false., nexp_decode_set = .false., &
have_ntol = .false.
type (option) :: long_options(31) = [ &
option ('help', .false., 'h', 'Display this help message', ''), &
option ('shmem',.true.,'s','Use shared memory for sample data','KEY'), &
2020-10-22 22:24:19 -04:00
option ('tr-period', .true., 'p', 'Tx/Rx period, default SECONDS=60', &
'SECONDS'), &
option ('executable-path', .true., 'e', &
'Location of subordinate executables (KVASD) default PATH="."', &
'PATH'), &
option ('data-path', .true., 'a', &
'Location of writeable data files, default PATH="."', 'PATH'), &
option ('temp-path', .true., 't', &
'Temporary files path, default PATH="."', 'PATH'), &
option ('lowest', .true., 'L', &
'Lowest frequency decoded (JT65), default HERTZ=200', 'HERTZ'), &
option ('highest', .true., 'H', &
'Highest frequency decoded, default HERTZ=4007', 'HERTZ'), &
option ('split', .true., 'S', &
'Lowest JT9 frequency decoded, default HERTZ=2700', 'HERTZ'), &
option ('rx-frequency', .true., 'f', &
'Receive frequency offset, default HERTZ=1500', 'HERTZ'), &
2020-10-22 22:24:19 -04:00
option ('freq-tolerance', .true., 'F', &
'Receive frequency tolerance, default HERTZ=20', 'HERTZ'), &
option ('patience', .true., 'w', &
'FFTW3 planing patience (0-4), default PATIENCE=1', 'PATIENCE'), &
option ('fft-threads', .true., 'm', &
'Number of threads to process large FFTs, default THREADS=1', &
'THREADS'), &
option ('q65', .false., '3', 'Q65 mode', ''), &
option ('jt4', .false., '4', 'JT4 mode', ''), &
option ('ft4', .false., '5', 'FT4 mode', ''), &
option ('jt65', .false.,'6', 'JT65 mode', ''), &
2020-10-22 22:24:19 -04:00
option ('fst4', .false., '7', 'FST4 mode', ''), &
option ('fst4w', .false., 'W', 'FST4W mode', ''), &
option ('ft8', .false., '8', 'FT8 mode', ''), &
option ('jt9', .false., '9', 'JT9 mode', ''), &
option ('qra64', .false., 'q', 'QRA64 mode', ''), &
option ('QSOprog', .true., 'Q', 'QSO progress (0-5), default PROGRESS=1',&
'QSOprogress'), &
option ('sub-mode', .true., 'b', 'Sub mode, default SUBMODE=A', 'A'), &
option ('depth', .true., 'd', &
'Decoding depth (1-3), default DEPTH=1', 'DEPTH'), &
option ('tx-jt9', .false., 'T', 'Tx mode is JT9', ''), &
option ('my-call', .true., 'c', 'my callsign', 'CALL'), &
option ('my-grid', .true., 'G', 'my grid locator', 'GRID'), &
option ('his-call', .true., 'x', 'his callsign', 'CALL'), &
option ('his-grid', .true., 'g', 'his grid locator', 'GRID'), &
option ('experience-decode', .true., 'X', &
'experience based decoding flags (1..n), default FLAGS=0', &
'FLAGS') ]
type(dec_data), allocatable :: shared_data
character(len=20) :: datetime=''
character(len=12) :: mycall='K1ABC', hiscall='W9XYZ'
character(len=6) :: mygrid='', hisgrid='EN37'
common/patience/npatience,nthreads
common/decstats/ntry65a,ntry65b,n65a,n65b,num9,numfano
data npatience/1/,nthreads/1/,wisfile/' '/
iwspr=0
nsubmode = 0
2020-10-22 22:24:19 -04:00
ntol = 20
TRperiod=60.d0
do
call getopt('hs:e:a:b:r:m:p:d:f:F:w:t:9876543WqTL:S:H:c:G:x:g:X:Q:', &
long_options,c,optarg,arglen,stat,offset,remain,.true.)
if (stat .ne. 0) then
exit
end if
select case (c)
case ('h')
display_help = .true.
case ('s')
read_files = .false.
shm_key = optarg(:arglen)
case ('e')
exe_dir = optarg(:arglen)
case ('a')
data_dir = optarg(:arglen)
case ('b')
nsubmode = ichar (optarg(:1)) - ichar ('A')
case ('t')
temp_dir = optarg(:arglen)
case ('m')
read (optarg(:arglen), *) nthreads
case ('p')
read (optarg(:arglen), *) TRperiod
case ('d')
read (optarg(:arglen), *) ndepth
case ('f')
read (optarg(:arglen), *) nrxfreq
2020-10-22 22:24:19 -04:00
case ('F')
read (optarg(:arglen), *) ntol
have_ntol = .true.
case ('L')
read (optarg(:arglen), *) flow
case ('S')
read (optarg(:arglen), *) fsplit
case ('H')
read (optarg(:arglen), *) fhigh
case ('q')
mode = 164
case ('Q')
read (optarg(:arglen), *) nQSOProg
case ('3')
mode = 66
case ('4')
mode = 4
case ('5')
mode = 5
case ('6')
if (mode.lt.65) mode = mode + 65
case ('7')
2020-06-27 09:53:11 -04:00
mode = 240
iwspr=0
case ('8')
mode = 8
case ('9')
if (mode.lt.9.or.mode.eq.65) mode = mode + 9
case ('T')
tx9 = .true.
case ('w')
read (optarg(:arglen), *) npatience
case ('W')
mode = 241
iwspr=1
case ('c')
read (optarg(:arglen), *) mycall
case ('G')
read (optarg(:arglen), *) mygrid
case ('x')
read (optarg(:arglen), *) hiscall
case ('g')
read (optarg(:arglen), *) hisgrid
case ('X')
read (optarg(:arglen), *) nexp_decode
nexp_decode_set = .true.
end select
end do
if (display_help .or. stat .lt. 0 &
.or. (.not. read_files .and. remain .gt. 0) &
.or. (read_files .and. remain .lt. 1)) then
print *, 'Usage: jt9 [OPTIONS] file1 [file2 ...]'
print *, ' Reads data from *.wav files.'
print *, ''
print *, ' jt9 -s <key> [-w patience] [-m threads] [-e path] [-a path] [-t path]'
print *, ' Gets data from shared memory region with key==<key>'
print *, ''
print *, 'OPTIONS:'
print *, ''
do i = 1, size (long_options)
call long_options(i) % print (6)
end do
go to 999
endif
iret=fftwf_init_threads() !Initialize FFTW threading
! Default to 1 thread, but use nthreads for the big ones
call fftwf_plan_with_nthreads(1)
! Import FFTW wisdom, if available
wisfile=trim(data_dir)//'/jt9_wisdom.dat'// C_NULL_CHAR
iret=fftwf_import_wisdom_from_filename(wisfile)
ntry65a=0
ntry65b=0
n65a=0
n65b=0
num9=0
numfano=0
if (.not. read_files) then
call jt9a() !We're running under control of WSJT-X
go to 999
endif
if(mycall.eq.'b') mycall=' '
if(hiscall.eq.'b') then
hiscall=' '
hisgrid=' '
endif
2020-10-22 22:24:19 -04:00
if (mode .eq. 241) then
ntol = min (ntol, 100)
else if (mode .eq. 65 + 9 .and. .not. have_ntol) then
2020-10-22 22:24:19 -04:00
ntol = 20
else if (mode .eq. 66 .and. .not. have_ntol) then
ntol = 10
2020-10-22 22:24:19 -04:00
else
ntol = min (ntol, 1000)
end if
if (.not. nexp_decode_set) then
if (mode .eq. 240 .or. mode .eq. 241) then
nexp_decode = 3 * 256 ! single decode off and nb=0
end if
end if
allocate(shared_data)
nflatten=0
do iarg = offset + 1, offset + remain
call get_command_argument (iarg, optarg, arglen)
infile = optarg(:arglen)
call wav%read (infile)
nfsample=wav%audio_format%sample_rate
i1=index(infile,'.wav')
if(i1.lt.1) i1=index(infile,'.WAV')
if(infile(i1-5:i1-5).eq.'_') then
read(infile(i1-4:i1-1),*,err=1) nutc
else
read(infile(i1-6:i1-1),*,err=1) nutc
endif
go to 2
1 nutc=0
2 nsps=6912
npts=TRperiod*12000.d0
kstep=nsps/2
k=0
nhsym=0
nhsym0=-999
if(iarg .eq. offset + 1) then
Make Fortran profiling timer function a callback with a default null implementation Groundwork for calling the decoders directly from C/C++ threads. To access the timer module timer_module must now be used. Instrumented code need only use the module function 'timer' which is now a procedure pointer that is guaranteed to be associated (unless null() is assigned to it, which should not be done). The default behaviour of 'timer' is to do nothing. If a Fortran program wishes to profile code it should now use the timer_impl module which contains a default timer implementation. The main program should call 'init_timer([filename])' before using 'timer' or calling routines that are instrumented. If 'init_timer([filename])'. If it is called then an optional file name may be provided with 'timer.out' being used as a default. The procedure 'fini_timer()' may be called to close the file. The default timer implementation is thread safe if used with OpenMP multi-threaded code so long as the OpenMP thread team is given the copyin(/timer_private/) attribute for correct operation. The common block /timer_private/ should be included for OpenMP use by including the file 'timer_common.inc'. The module 'lib/timer_C_wrapper.f90' provides a Fortran wrapper along with 'init' and 'fini' subroutines which allow a C/C++ application to call timer instrumented Fortran code and for it to receive callbacks of 'timer()' subroutine invocations. No C/C++ timer implementation is provided at this stage. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6320 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-12-27 10:40:57 -05:00
call init_timer (trim(data_dir)//'/timer.out')
call timer('jt9 ',0)
endif
shared_data%id2=0 !??? Why is this necessary ???
if(mode.eq.5) npts=21*3456
if(mode.eq.66) npts=TRperiod*12000
do iblk=1,npts/kstep
k=iblk*kstep
if(mode.eq.8 .and. k.gt.179712) exit
call timer('read_wav',0)
read(unit=wav%lun,end=3) shared_data%id2(k-kstep+1:k)
go to 4
3 call timer('read_wav',1)
print*,'EOF on input file ',trim(infile)
exit
4 call timer('read_wav',1)
nhsym=(k-2048)/kstep
if(nhsym.ge.1 .and. nhsym.ne.nhsym0) then
if(mode.eq.9 .or. mode.eq.74) then
! Compute rough symbol spectra for the JT9 decoder
ingain=0
call timer('symspec ',0)
nminw=1
call symspec(shared_data,k,Tperiod,nsps,ingain, &
bLowSidelobes,nminw,pxdb,s,df3,ihsym,npts8,pxdbmax)
call timer('symspec ',1)
endif
nhsym0=nhsym
if(nhsym.ge.181 .and. mode.ne.240 .and. mode.ne.241 .and. mode.ne.66) exit
endif
enddo
close(unit=wav%lun)
shared_data%params%nutc=nutc
shared_data%params%ndiskdat=.true.
shared_data%params%ntr=TRperiod
shared_data%params%nfqso=nrxfreq
shared_data%params%newdat=.true.
shared_data%params%npts8=74736
shared_data%params%nfa=flow
shared_data%params%nfsplit=fsplit
shared_data%params%nfb=fhigh
2020-10-22 22:24:19 -04:00
shared_data%params%ntol=ntol
shared_data%params%kin=64800
2020-06-27 09:53:11 -04:00
if(mode.eq.240) shared_data%params%kin=720000 !### 60 s periods ###
shared_data%params%nzhsym=nhsym
if(mode.eq.240 .and. iwspr.eq.1) ndepth=ior(ndepth,128)
shared_data%params%ndepth=ndepth
shared_data%params%lft8apon=.true.
shared_data%params%ljt65apon=.true.
shared_data%params%napwid=75
shared_data%params%dttol=3.
if(mode.eq.164 .and. nsubmode.lt.100) nsubmode=nsubmode+100
shared_data%params%nagain=.false.
shared_data%params%nclearave=.false.
shared_data%params%lapcqonly=.false.
shared_data%params%naggressive=0
shared_data%params%n2pass=2
shared_data%params%nQSOprogress=nQSOProg
shared_data%params%nranera=6 !### ntrials=3000
shared_data%params%nrobust=.false.
shared_data%params%nexp_decode=nexp_decode
shared_data%params%mycall=transfer(mycall,shared_data%params%mycall)
shared_data%params%mygrid=transfer(mygrid,shared_data%params%mygrid)
shared_data%params%hiscall=transfer(hiscall,shared_data%params%hiscall)
shared_data%params%hisgrid=transfer(hisgrid,shared_data%params%hisgrid)
if (tx9) then
shared_data%params%ntxmode=9
else
shared_data%params%ntxmode=65
end if
if (mode.eq.0) then
shared_data%params%nmode=65+9
else
shared_data%params%nmode=mode
end if
shared_data%params%nsubmode=nsubmode
!### temporary, for MAP65:
if(mode.eq.66 .and. TRperiod.eq.60) shared_data%params%emedelay=2.5
datetime="2013-Apr-16 15:13" !### Temp
shared_data%params%datetime=transfer(datetime,shared_data%params%datetime)
if(mode.eq.9 .and. fsplit.ne.2700) shared_data%params%nfa=fsplit
if(mode.eq.8) then
! "Early" decoding pass, FT8 only, when jt9 reads data from disk
nearly=41
shared_data%params%nzhsym=nearly
id2a(1:nearly*3456)=shared_data%id2(1:nearly*3456)
id2a(nearly*3456+1:)=0
2020-03-19 15:53:44 -04:00
call multimode_decoder(shared_data%ss,id2a, &
shared_data%params,nfsample)
nearly=47
shared_data%params%nzhsym=nearly
id2a(1:nearly*3456)=shared_data%id2(1:nearly*3456)
id2a(nearly*3456+1:)=0
2020-03-19 15:53:44 -04:00
call multimode_decoder(shared_data%ss,id2a, &
shared_data%params,nfsample)
id2a(nearly*3456+1:50*3456)=shared_data%id2(nearly*3456+1:50*3456)
id2a(50*3456+1:)=0
shared_data%params%nzhsym=50
2020-03-19 15:53:44 -04:00
call multimode_decoder(shared_data%ss,id2a, &
shared_data%params,nfsample)
cycle
endif
! Normal decoding pass
2020-03-19 15:53:44 -04:00
call multimode_decoder(shared_data%ss,shared_data%id2, &
shared_data%params,nfsample)
enddo
call timer('jt9 ',1)
call timer('jt9 ',101)
999 continue
! Output decoder statistics
Make Fortran profiling timer function a callback with a default null implementation Groundwork for calling the decoders directly from C/C++ threads. To access the timer module timer_module must now be used. Instrumented code need only use the module function 'timer' which is now a procedure pointer that is guaranteed to be associated (unless null() is assigned to it, which should not be done). The default behaviour of 'timer' is to do nothing. If a Fortran program wishes to profile code it should now use the timer_impl module which contains a default timer implementation. The main program should call 'init_timer([filename])' before using 'timer' or calling routines that are instrumented. If 'init_timer([filename])'. If it is called then an optional file name may be provided with 'timer.out' being used as a default. The procedure 'fini_timer()' may be called to close the file. The default timer implementation is thread safe if used with OpenMP multi-threaded code so long as the OpenMP thread team is given the copyin(/timer_private/) attribute for correct operation. The common block /timer_private/ should be included for OpenMP use by including the file 'timer_common.inc'. The module 'lib/timer_C_wrapper.f90' provides a Fortran wrapper along with 'init' and 'fini' subroutines which allow a C/C++ application to call timer instrumented Fortran code and for it to receive callbacks of 'timer()' subroutine invocations. No C/C++ timer implementation is provided at this stage. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6320 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-12-27 10:40:57 -05:00
call fini_timer ()
! Save FFTW wisdom and free memory
if(len(trim(wisfile)).gt.0) iret=fftwf_export_wisdom_to_filename(wisfile)
call four2a(a,-1,1,1,1)
call filbig(a,-1,1,0.0,0,0,0,0,0) !used for FFT plans
call fftwf_cleanup_threads()
call fftwf_cleanup()
end program jt9