WSJT-X/lib/fchisq65.f90

69 lines
1.7 KiB
Fortran
Raw Normal View History

real function fchisq65(cx,npts,fsample,nflip,a,ccfmax,dtmax)
Make Fortran profiling timer function a callback with a default null implementation Groundwork for calling the decoders directly from C/C++ threads. To access the timer module timer_module must now be used. Instrumented code need only use the module function 'timer' which is now a procedure pointer that is guaranteed to be associated (unless null() is assigned to it, which should not be done). The default behaviour of 'timer' is to do nothing. If a Fortran program wishes to profile code it should now use the timer_impl module which contains a default timer implementation. The main program should call 'init_timer([filename])' before using 'timer' or calling routines that are instrumented. If 'init_timer([filename])'. If it is called then an optional file name may be provided with 'timer.out' being used as a default. The procedure 'fini_timer()' may be called to close the file. The default timer implementation is thread safe if used with OpenMP multi-threaded code so long as the OpenMP thread team is given the copyin(/timer_private/) attribute for correct operation. The common block /timer_private/ should be included for OpenMP use by including the file 'timer_common.inc'. The module 'lib/timer_C_wrapper.f90' provides a Fortran wrapper along with 'init' and 'fini' subroutines which allow a C/C++ application to call timer instrumented Fortran code and for it to receive callbacks of 'timer()' subroutine invocations. No C/C++ timer implementation is provided at this stage. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6320 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-12-27 10:40:57 -05:00
use timer_module, only: timer
parameter (NMAX=60*12000) !Samples per 60 s
complex cx(npts)
real a(5)
complex w,wstep,z
real ss(3000)
complex csx(0:NMAX/8)
data twopi/6.283185307/a1,a2,a3/99.,99.,99./
save
call timer('fchisq65',0)
baud=11025.0/4096.0
nsps=nint(fsample/baud) !Samples per symbol
nsph=nsps/2 !Samples per half-symbol
ndiv=16 !Output ss() steps per symbol
nout=ndiv*npts/nsps
dtstep=1.0/(ndiv*baud) !Time per output step
if(a(1).ne.a1 .or. a(2).ne.a2 .or. a(3).ne.a3) then
a1=a(1)
a2=a(2)
a3=a(3)
! Mix and integrate the complex signal
csx(0)=0.
w=1.0
x0=0.5*(npts+1)
s=2.0/npts
do i=1,npts
x=s*(i-x0)
if(mod(i,100).eq.1) then
p2=1.5*x*x - 0.5
dphi=(a(1) + x*a(2) + p2*a(3)) * (twopi/fsample)
wstep=cmplx(cos(dphi),sin(dphi))
endif
w=w*wstep
csx(i)=csx(i-1) + w*cx(i)
enddo
endif
! Compute whole-symbol powers at 1/16-symbol steps.
fac=1.e-4
do i=1,nout
j=nsps+(i-1)*nsps/16 !steps by 8 samples (1/16 of a symbol)
k=j-nsps
ss(i)=0.
if(k.ge.0 .and. j.le.npts) then
z=csx(j)-csx(k) ! difference over span of 128 pts
ss(i)=fac*(real(z)**2 + aimag(z)**2)
endif
enddo
ccfmax=0.
call timer('ccf2 ',0)
call ccf2(ss,nout,nflip,ccf,xlagpk)
call timer('ccf2 ',1)
if(ccf.gt.ccfmax) then
ccfmax=ccf
dtmax=xlagpk*dtstep
endif
fchisq65=-ccfmax
call timer('fchisq65',1)
return
end function fchisq65