WSJT-X/lib/fchisq65.f90
Bill Somerville f416a52def Make Fortran profiling timer function a callback with a default null implementation
Groundwork for calling the decoders directly from C/C++ threads.

To  access   the  timer   module  timer_module   must  now   be  used.
Instrumented code need  only use the module function  'timer' which is
now a  procedure pointer that  is guaranteed to be  associated (unless
null()  is assigned  to it,  which should  not be  done). The  default
behaviour of 'timer' is to do nothing.

If a  Fortran program  wishes to  profile code it  should now  use the
timer_impl module  which contains a default  timer implementation. The
main program should call 'init_timer([filename])' before using 'timer'
or     calling     routines     that     are     instrumented.      If
'init_timer([filename])'.  If it is called  then an optional file name
may  be  provided  with  'timer.out'  being used  as  a  default.  The
procedure 'fini_timer()' may be called to close the file.

The default  timer implementation is  thread safe if used  with OpenMP
multi-threaded code  so long as  the OpenMP  thread team is  given the
copyin(/timer_private/) attribute  for correct operation.   The common
block /timer_private/ should  be included for OpenMP  use by including
the file 'timer_common.inc'.

The module 'lib/timer_C_wrapper.f90' provides  a Fortran wrapper along
with 'init' and 'fini' subroutines  which allow a C/C++ application to
call timer instrumented  Fortran code and for it  to receive callbacks
of 'timer()' subroutine invocations.  No C/C++ timer implementation is
provided at this stage.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6320 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-12-27 15:40:57 +00:00

69 lines
1.7 KiB
Fortran

real function fchisq65(cx,npts,fsample,nflip,a,ccfmax,dtmax)
use timer_module, only: timer
parameter (NMAX=60*12000) !Samples per 60 s
complex cx(npts)
real a(5)
complex w,wstep,z
real ss(3000)
complex csx(0:NMAX/8)
data twopi/6.283185307/a1,a2,a3/99.,99.,99./
save
call timer('fchisq65',0)
baud=11025.0/4096.0
nsps=nint(fsample/baud) !Samples per symbol
nsph=nsps/2 !Samples per half-symbol
ndiv=16 !Output ss() steps per symbol
nout=ndiv*npts/nsps
dtstep=1.0/(ndiv*baud) !Time per output step
if(a(1).ne.a1 .or. a(2).ne.a2 .or. a(3).ne.a3) then
a1=a(1)
a2=a(2)
a3=a(3)
! Mix and integrate the complex signal
csx(0)=0.
w=1.0
x0=0.5*(npts+1)
s=2.0/npts
do i=1,npts
x=s*(i-x0)
if(mod(i,100).eq.1) then
p2=1.5*x*x - 0.5
dphi=(a(1) + x*a(2) + p2*a(3)) * (twopi/fsample)
wstep=cmplx(cos(dphi),sin(dphi))
endif
w=w*wstep
csx(i)=csx(i-1) + w*cx(i)
enddo
endif
! Compute whole-symbol powers at 1/16-symbol steps.
fac=1.e-4
do i=1,nout
j=nsps+(i-1)*nsps/16 !steps by 8 samples (1/16 of a symbol)
k=j-nsps
ss(i)=0.
if(k.ge.0 .and. j.le.npts) then
z=csx(j)-csx(k) ! difference over span of 128 pts
ss(i)=fac*(real(z)**2 + aimag(z)**2)
endif
enddo
ccfmax=0.
call timer('ccf2 ',0)
call ccf2(ss,nout,nflip,ccf,xlagpk)
call timer('ccf2 ',1)
if(ccf.gt.ccfmax) then
ccfmax=ccf
dtmax=xlagpk*dtstep
endif
fchisq65=-ccfmax
call timer('fchisq65',1)
return
end function fchisq65