WSJT-X/lib/fsk4hf/gf64_osd.f90

109 lines
3.4 KiB
Fortran
Raw Normal View History

subroutine gf64_osd(mrsym,mrprob,mr2sym,mr2prob,cw)
use jt65_generator_matrix
integer mrsym(63),mrprob(63),mr2sym(63),mr2prob(63),cw(63)
integer indx(63)
integer gmrb(12,63)
integer correct(63)
integer correctr(63)
integer candidate(63)
integer candidater(63)
logical mask(63)
data correct/ & ! K1ABC W9XYZ EN37
41, 0, 54, 46, 55, 29, 57, 35, 35, 48, 48, 61, &
21, 58, 25, 10, 50, 43, 28, 37, 10, 2, 61, 55, &
25, 5, 5, 57, 28, 11, 32, 45, 16, 55, 31, 46, &
44, 55, 34, 38, 50, 62, 52, 58, 17, 62, 35, 34, &
28, 21, 15, 47, 33, 20, 15, 28, 58, 4, 58, 61, &
59, 42, 2/
correctr=correct(63:1:-1)
call indexx(mrprob,63,indx)
! do i=1,63
! write(*,*) i,correctr(indx(i)),mrsym(indx(i)),mr2sym(indx(i))
! enddo
nhard=count(mrsym.ne.correctr)
nerrtop12=count(mrsym(indx(52:63)).ne.correctr(indx(52:63)))
nerrnext12=count(mrsym(indx(40:51)).ne.correctr(indx(40:51)))
write(*,*) 'nerr, nerrtop12, nerrnext12 ',nerr,nerrtop12,nerrnext12
! The best 12 symbols will be used as the Most Reliable Basis
! Reorder the columns of the generator matrix in order of decreasing quality.
do i=1,63
gmrb(:,i)=g(:,indx(63+1-i))
enddo
! Put the generator matrix in standard form so that top 12 symbols are
! encoded systematically.
call gf64_standardize_genmat(gmrb)
! Add various error patterns to the 12 basis symbols and reencode each one
! to get a list of codewords. For now, just find the zero'th order codeword.
call gf64_encode(gmrb,mrsym(indx(63:52:-1)),candidate)
! Undo the sorting to put the codeword symbols back into the "right" order.
candidater=candidate(63:1:-1)
candidate(indx)=candidater
!write(*,'(63i3)') candidate
!write(*,'(63i3)') correctr
!write(*,'(63i3)') mrsym
nerr=count(correctr.ne.candidate)
write(*,*) 'Number of differences between candidate and correct codeword: ',nerr
if( nerr .eq. 0 ) write(*,*) 'Successful decode'
return
end subroutine gf64_osd
subroutine gf64_standardize_genmat(gmrb)
use gf64math
integer gmrb(12,63),temp(63),gkk,gjk,gkkinv
do k=1,12
gkk=gmrb(k,k)
if(gkk.eq.0) then ! zero pivot - swap with the first row with nonzero value
do kk=k+1,12
if(gmrb(kk,k).ne.0) then
temp=gmrb(k,:)
gmrb(k,:)=gmrb(kk,:)
gmrb(kk,:)=temp
gkk=gmrb(k,k)
goto 20
endif
enddo
endif
20 gkkinv=gf64_inverse(gkk)
do ic=1,63
gmrb(k,ic)=gf64_product(gmrb(k,ic),gkkinv)
enddo
do j=1,12
if(j.ne.k) then
gjk=gmrb(j,k)
do ic=1,63
gmrb(j,ic)=gf64_sum(gmrb(j,ic),gf64_product(gmrb(k,ic),gjk))
enddo
endif
enddo
enddo
return
end subroutine gf64_standardize_genmat
subroutine gf64_encode(gg,message,codeword)
!
! Encoder for a (63,12) Reed-Solomon code.
! The generator matrix is supplied in array gg.
!
use gf64math
integer message(12) !Twelve 6-bit data symbols
integer codeword(63) !RS(63,12) codeword
integer gg(12,63)
codeword=0
do j=1,12
do i=1,63
iprod=gf64_product(message(j),gg(j,i))
codeword(i)=gf64_sum(codeword(i),iprod)
enddo
enddo
return
end subroutine gf64_encode