Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
<class>configuration_dialog</class>
<widget class="QDialog" name="configuration_dialog">
2018-11-11 21:02:07 -05:00
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
2019-01-08 13:03:43 -05:00
<width>546</width>
<height>536</height>
2018-11-11 21:02:07 -05:00
</rect>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="windowTitle">
2014-07-25 15:34:48 -04:00
<string>Settings</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<layout class="QVBoxLayout" name="verticalLayout_2">
<item>
<widget class="QTabWidget" name="configuration_tabs">
<property name="currentIndex">
2018-10-28 10:28:53 -04:00
<number>0</number>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<widget class="QWidget" name="general_tab">
<attribute name="title">
<string>Genera&l</string>
</attribute>
<attribute name="toolTip">
<string>General station details and settings.</string>
</attribute>
<layout class="QVBoxLayout" name="verticalLayout_4">
<item>
<widget class="QGroupBox" name="station_group_box">
<property name="title">
<string>Station Details</string>
</property>
2017-07-07 19:11:41 -04:00
<layout class="QVBoxLayout" name="verticalLayout_12">
<item>
<layout class="QHBoxLayout" name="horizontalLayout_14">
2015-03-04 07:22:33 -05:00
<item>
2017-07-07 19:11:41 -04:00
<layout class="QFormLayout" name="formLayout_3">
<item row="0" column="0">
<widget class="QLabel" name="callsign_label">
<property name="text">
<string>My C&all:</string>
</property>
<property name="buddy">
<cstring>callsign_line_edit</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QLineEdit" name="callsign_line_edit">
<property name="toolTip">
<string>Station callsign.</string>
</property>
</widget>
</item>
</layout>
2015-03-04 07:22:33 -05:00
</item>
<item>
2017-07-07 19:11:41 -04:00
<layout class="QFormLayout" name="formLayout_12">
<item row="0" column="0">
<widget class="QLabel" name="grid_label">
<property name="text">
<string>M&y Grid:</string>
</property>
<property name="buddy">
<cstring>grid_line_edit</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QLineEdit" name="grid_line_edit">
<property name="toolTip">
2018-10-09 15:40:38 -04:00
<string><html><head/><body><p>Maidenhead locator, preferably 6 characters.</p></body></html></string>
2017-07-07 19:11:41 -04:00
</property>
</widget>
</item>
</layout>
2015-03-04 07:22:33 -05:00
</item>
2018-02-04 17:42:35 -05:00
<item>
2018-08-29 16:02:06 -04:00
<widget class="QCheckBox" name="use_dynamic_grid">
<property name="toolTip">
<string>Check to allow grid changes from external programs</string>
</property>
<property name="text">
<string>AutoGrid</string>
</property>
</widget>
2018-02-04 17:42:35 -05:00
</item>
2015-03-04 07:22:33 -05:00
<item>
2017-07-07 19:11:41 -04:00
<layout class="QFormLayout" name="formLayout_2">
<item row="0" column="0">
<widget class="QLabel" name="label_12">
<property name="text">
<string>IARU Region:</string>
</property>
<property name="buddy">
<cstring>region_combo_box</cstring>
</property>
</widget>
</item>
2018-02-04 17:42:35 -05:00
<item row="0" column="1">
2018-10-09 15:40:38 -04:00
<widget class="QComboBox" name="region_combo_box">
<property name="toolTip">
<string><html><head/><body><p>Select your IARU region.</p></body></html></string>
</property>
</widget>
2018-02-04 17:42:35 -05:00
</item>
2017-07-07 19:11:41 -04:00
</layout>
2015-03-04 07:22:33 -05:00
</item>
2017-07-07 19:11:41 -04:00
</layout>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</item>
2017-07-07 19:11:41 -04:00
<item>
<layout class="QFormLayout" name="formLayout_13">
<item row="0" column="0">
<widget class="QLabel" name="label_5">
<property name="text">
<string>Message generation for type 2 compound callsign holders:</string>
</property>
<property name="alignment">
<set>Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter</set>
</property>
<property name="buddy">
<cstring>type_2_msg_gen_combo_box</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QComboBox" name="type_2_msg_gen_combo_box">
<property name="enabled">
<bool>true</bool>
</property>
<property name="toolTip">
2017-09-20 15:19:47 -04:00
<string><html><head/><body><p>Type 2 compound callsigns are those with prefixes or suffixes not included in the allowed shortlist (See Help-&gt;Add-on prefixes and suffixes).</p><p>This option determines which generated messages should contain your full type 2 compound call sign rather than your base callsign. It only applies if you have a type 2 compound callsign.</p><p>This option controls the way the messages that are used to answer CQ calls are generated. Generated messages 6 (CQ) and 5 (73) will always contain your full callsign. The JT65 and JT9 protocols allow for some standard messages with your full call at the expense of another piece of information such as the DX call or your locator.</p><p>Choosing message 1 omits the DX callsign which may be an issue when replying to CQ calls. Choosing message 3 also omits the DX callsign and many versions of this and other software will not extract the report. Choosing neither means that your full callsign only goes in your message 5 (73) so your QSO partner may log the wrong callsign.</p><p>None of these options are perfect, message 3 is usually best but be aware your QSO partner may not log the report you send them.</p></body></html></string>
2017-07-07 19:11:41 -04:00
</property>
<property name="currentIndex">
<number>1</number>
</property>
<item>
<property name="text">
<string>Full call in Tx1</string>
</property>
</item>
<item>
<property name="text">
<string>Full call in Tx3</string>
</property>
</item>
<item>
<property name="text">
<string>Full call in Tx5 only</string>
</property>
</item>
</widget>
</item>
</layout>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</item>
</layout>
</widget>
</item>
<item>
<widget class="Line" name="line_5">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
</widget>
</item>
<item>
<widget class="QGroupBox" name="display_group_box">
<property name="title">
<string>Display</string>
</property>
<layout class="QGridLayout" name="gridLayout_4">
2019-01-08 13:03:43 -05:00
<item row="3" column="0">
<widget class="QCheckBox" name="TX_messages_check_box">
2016-07-01 07:36:59 -04:00
<property name="toolTip">
2019-01-08 13:03:43 -05:00
<string>Show outgoing transmitted messages in the Rx frequency window.</string>
2016-07-01 07:36:59 -04:00
</property>
<property name="text">
2019-01-08 13:03:43 -05:00
<string>&Tx messages to Rx frequency window</string>
2016-07-01 07:36:59 -04:00
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="4" column="0">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<widget class="QCheckBox" name="DXCC_check_box">
<property name="toolTip">
<string>Show if decoded stations are new DXCC entities or worked before.</string>
</property>
<property name="text">
2018-08-27 13:21:06 -04:00
<string>Show &DXCC, grid, and worked-before status</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="checked">
<bool>false</bool>
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="0" column="0">
<widget class="QCheckBox" name="decodes_from_top_check_box">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="toolTip">
2019-01-08 13:03:43 -05:00
<string><html><head/><body><p>Check to have decodes for a new period start at the top of the Band Activity window and not scroll off the top when the window is full.</p><p>This is to aid selecting decodes to double-click while decoding is still in progress. Use the Band Activity vertical scroll bar to reveal decodes past the bottom of the window.</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
2019-01-08 13:03:43 -05:00
<string>Start new period decodes at top</string>
2016-07-01 07:36:59 -04:00
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="4" column="1">
<widget class="QCheckBox" name="ppfx_check_box">
2016-07-01 07:36:59 -04:00
<property name="text">
2019-01-08 13:03:43 -05:00
<string>Show principal prefix instead of country name</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="0" column="1" rowspan="4">
<layout class="QHBoxLayout" name="horizontalLayout_21">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item>
2019-01-08 13:03:43 -05:00
<spacer name="horizontalSpacer_2">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="orientation">
2019-01-08 13:03:43 -05:00
<enum>Qt::Horizontal</enum>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
2017-07-28 11:50:13 -04:00
<property name="sizeHint" stdset="0">
<size>
<width>0</width>
<height>0</height>
</size>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</spacer>
</item>
2019-01-08 13:03:43 -05:00
<item>
<layout class="QVBoxLayout" name="verticalLayout_6">
<item>
<widget class="QPushButton" name="font_push_button">
<property name="toolTip">
<string>Set the font characteristics for the application.</string>
</property>
<property name="text">
<string>Font...</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="decoded_text_font_push_button">
<property name="toolTip">
<string>Set the font characteristics for the Band Activity and Rx Frequency areas.</string>
</property>
<property name="text">
<string>Decoded Text Font...</string>
</property>
</widget>
</item>
<item>
<spacer name="verticalSpacer">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>0</width>
<height>0</height>
</size>
</property>
</spacer>
</item>
</layout>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</layout>
</item>
2019-01-08 13:03:43 -05:00
<item row="1" column="0">
<widget class="QCheckBox" name="insert_blank_check_box">
<property name="toolTip">
<string>Include a separator line between periods in the band activity window.</string>
</property>
2017-12-04 12:55:24 -05:00
<property name="text">
2019-01-08 13:03:43 -05:00
<string>&Blank line between decoding periods</string>
</property>
</widget>
</item>
<item row="2" column="0">
<widget class="QCheckBox" name="miles_check_box">
<property name="toolTip">
<string>Show distance to DX station in miles rather than kilometers.</string>
</property>
<property name="text">
<string>Display dista&nce in miles</string>
2017-12-04 12:55:24 -05:00
</property>
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</layout>
</widget>
</item>
<item>
<widget class="Line" name="line_7">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
</widget>
</item>
<item>
<widget class="QGroupBox" name="behaviour_group_box">
<property name="title">
2014-07-23 13:16:35 -04:00
<string>Behavior</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<layout class="QGridLayout" name="gridLayout_8">
2017-09-29 13:40:30 -04:00
<item row="4" column="1">
<layout class="QHBoxLayout" name="horizontalLayout_12">
<item>
<spacer name="horizontalSpacer_7">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>0</width>
<height>0</height>
</size>
</property>
</spacer>
</item>
<item>
<widget class="QLabel" name="label_10">
<property name="text">
<string>Tx watchdog:</string>
</property>
<property name="buddy">
<cstring>tx_watchdog_spin_box</cstring>
</property>
</widget>
</item>
<item>
<widget class="QSpinBox" name="tx_watchdog_spin_box">
<property name="toolTip">
<string><html><head/><body><p>Number of minutes before unattended transmissions are aborted</p></body></html></string>
</property>
<property name="specialValueText">
<string>Disabled</string>
</property>
<property name="suffix">
<string> minutes</string>
</property>
<property name="prefix">
<string/>
</property>
<property name="value">
<number>6</number>
</property>
</widget>
</item>
</layout>
2016-03-10 10:13:06 -05:00
</item>
2019-01-08 13:03:43 -05:00
<item row="3" column="1">
<widget class="QCheckBox" name="decode_at_52s_check_box">
<property name="text">
<string>Decode after EME delay</string>
</property>
</widget>
</item>
2015-02-27 13:59:08 -05:00
<item row="0" column="0">
<widget class="QCheckBox" name="monitor_off_check_box">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="toolTip">
2015-02-27 13:59:08 -05:00
<string>Don't start decoding until the monitor button is clicked.</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
2015-02-27 13:59:08 -05:00
<string>Mon&itor off at startup</string>
</property>
<property name="checked">
<bool>false</bool>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="2" column="1">
<widget class="QCheckBox" name="single_decode_check_box">
2016-07-01 07:36:59 -04:00
<property name="text">
2019-01-08 13:03:43 -05:00
<string>Single decode</string>
2016-07-01 07:36:59 -04:00
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="0" column="1">
<widget class="QCheckBox" name="enable_VHF_features_check_box">
2017-09-29 13:40:30 -04:00
<property name="text">
2019-01-08 13:03:43 -05:00
<string>Enable VHF/UHF/Microwave features</string>
2017-09-29 13:40:30 -04:00
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QCheckBox" name="tx_QSY_check_box">
<property name="toolTip">
<string><html><head/><body><p>Some rigs are not able to process CAT commands while transmitting. This means that if you are operating in split mode you may have to uncheck this option.</p></body></html></string>
</property>
<property name="text">
<string>Allow Tx frequency changes while transmitting</string>
</property>
</widget>
</item>
2015-11-17 20:28:12 -05:00
<item row="6" column="0" colspan="2">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<layout class="QHBoxLayout" name="horizontalLayout_9">
<item>
<widget class="QCheckBox" name="CW_id_after_73_check_box">
<property name="toolTip">
<string>Send a CW ID after every 73 or free text message.</string>
</property>
<property name="text">
<string>CW ID a&fter 73</string>
</property>
</widget>
</item>
<item>
<spacer name="horizontalSpacer">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
2017-07-28 11:50:13 -04:00
<property name="sizeHint" stdset="0">
<size>
<width>0</width>
<height>0</height>
</size>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</spacer>
</item>
<item>
<widget class="QLabel" name="label">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="text">
<string>Periodic CW ID Inter&val:</string>
</property>
<property name="buddy">
<cstring>CW_id_interval_spin_box</cstring>
</property>
</widget>
</item>
<item>
<widget class="QSpinBox" name="CW_id_interval_spin_box">
<property name="toolTip">
<string>Send a CW ID periodically every few minutes.
This might be required under your countries licence regulations.
It will not interfere with other users as it is always sent in the
quiet period when decoding is done.</string>
</property>
</widget>
</item>
</layout>
</item>
2016-07-01 07:36:59 -04:00
<item row="1" column="0">
<widget class="QCheckBox" name="monitor_last_used_check_box">
<property name="toolTip">
<string><html><head/><body><p>Check this if you wish to automatically return to the last monitored frequency when monitor is enabled, leave it unchecked if you wish to have the current rig frequency maintained.</p></body></html></string>
</property>
2015-04-22 13:48:03 -04:00
<property name="text">
2016-07-01 07:36:59 -04:00
<string>Monitor returns to last used frequency</string>
2015-04-22 13:48:03 -04:00
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="4" column="0">
<widget class="QCheckBox" name="alternate_bindings_check_box">
2018-02-06 16:49:57 -05:00
<property name="text">
2019-01-08 13:03:43 -05:00
<string>Alternate F1-F5 bindings</string>
2018-02-06 16:49:57 -05:00
</property>
</widget>
</item>
<item row="3" column="0">
2016-07-01 07:36:59 -04:00
<widget class="QCheckBox" name="disable_TX_on_73_check_box">
<property name="toolTip">
<string>Turns off automatic transmissions after sending a 73 or any other free
text message.</string>
</property>
<property name="text">
<string>Di&sable Tx after sending 73</string>
2015-11-17 20:28:12 -05:00
</property>
</widget>
</item>
2019-01-08 13:03:43 -05:00
<item row="2" column="0">
<widget class="QCheckBox" name="quick_call_check_box">
<property name="toolTip">
<string>Automatic transmission mode.</string>
</property>
2018-12-28 11:19:29 -05:00
<property name="text">
2019-01-08 13:03:43 -05:00
<string>Doubl&e-click on call sets Tx enable</string>
2018-12-28 11:19:29 -05:00
</property>
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</layout>
</widget>
</item>
2017-07-07 19:11:41 -04:00
<item>
2019-01-08 13:03:43 -05:00
<spacer name="verticalSpacer_9">
2017-07-07 19:11:41 -04:00
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
2019-01-08 13:03:43 -05:00
<width>20</width>
<height>40</height>
2017-07-07 19:11:41 -04:00
</size>
</property>
</spacer>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</layout>
</widget>
<widget class="QWidget" name="radio_tab">
<attribute name="title">
<string>&Radio</string>
</attribute>
<attribute name="toolTip">
<string>Radio interface configuration settings.</string>
</attribute>
<layout class="QGridLayout" name="gridLayout_3">
<item row="1" column="0" rowspan="11">
<widget class="QGroupBox" name="CAT_control_group_box">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
<string>Settings that control your CAT interface.</string>
</property>
<property name="title">
<string>CAT Control</string>
</property>
<layout class="QVBoxLayout" name="verticalLayout_3">
<item>
<layout class="QFormLayout" name="formLayout">
2015-02-16 17:39:39 -05:00
<property name="fieldGrowthPolicy">
<enum>QFormLayout::ExpandingFieldsGrow</enum>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item row="0" column="0">
<widget class="QLabel" name="CAT_port_label">
<property name="text">
<string>Port:</string>
</property>
<property name="buddy">
<cstring>CAT_port_combo_box</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QComboBox" name="CAT_port_combo_box">
2015-02-16 17:08:54 -05:00
<property name="sizePolicy">
2015-02-16 17:56:13 -05:00
<sizepolicy hsizetype="MinimumExpanding" vsizetype="Fixed">
2015-02-16 17:08:54 -05:00
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="toolTip">
<string>Serial port used for CAT control.</string>
</property>
<property name="editable">
<bool>true</bool>
</property>
2015-11-22 14:17:06 -05:00
<property name="currentText">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<string/>
</property>
<property name="insertPolicy">
<enum>QComboBox::NoInsert</enum>
</property>
</widget>
</item>
</layout>
</item>
<item>
<widget class="QGroupBox" name="CAT_serial_port_parameters_group_box">
2015-02-16 17:56:13 -05:00
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="MinimumExpanding">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="title">
<string>Serial Port Parameters</string>
</property>
<layout class="QVBoxLayout" name="verticalLayout">
<item>
<layout class="QFormLayout" name="formLayout_5">
2015-02-16 17:39:39 -05:00
<property name="fieldGrowthPolicy">
<enum>QFormLayout::ExpandingFieldsGrow</enum>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item row="0" column="0">
<widget class="QLabel" name="CAT_baud_label">
<property name="text">
<string>Baud Rate:</string>
</property>
<property name="buddy">
<cstring>CAT_serial_baud_combo_box</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QComboBox" name="CAT_serial_baud_combo_box">
2015-02-16 17:56:13 -05:00
<property name="sizePolicy">
<sizepolicy hsizetype="MinimumExpanding" vsizetype="Fixed">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="toolTip">
<string>Serial port data rate which must match the setting of your radio.</string>
</property>
<property name="currentIndex">
2015-04-07 12:23:14 -04:00
<number>0</number>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<item>
<property name="text">
<string>1200</string>
</property>
</item>
<item>
<property name="text">
<string>2400</string>
</property>
</item>
<item>
<property name="text">
<string>4800</string>
</property>
</item>
<item>
<property name="text">
<string>9600</string>
</property>
</item>
<item>
<property name="text">
<string>19200</string>
</property>
</item>
<item>
<property name="text">
<string>38400</string>
</property>
</item>
<item>
<property name="text">
<string>57600</string>
</property>
</item>
2015-04-07 12:23:14 -04:00
<item>
<property name="text">
<string>115200</string>
</property>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</widget>
</item>
</layout>
</item>
<item>
<widget class="QGroupBox" name="CAT_data_bits_group_box">
<property name="toolTip">
2015-03-26 18:34:59 -04:00
<string><html><head/><body><p>Number of data bits used to communicate with your radio's CAT interface (usually eight).</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="title">
<string>Data Bits</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_4">
2018-03-16 18:00:33 -04:00
<item>
<widget class="QRadioButton" name="CAT_default_bit_radio_button">
<property name="text">
<string>D&efault</string>
</property>
<property name="checked">
<bool>true</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_data_bits_button_group</string>
</attribute>
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item>
<widget class="QRadioButton" name="CAT_7_bit_radio_button">
<property name="text">
<string>Se&ven</string>
</property>
2018-03-16 18:00:33 -04:00
<property name="autoExclusive">
<bool>true</bool>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<attribute name="buttonGroup">
<string notr="true">CAT_data_bits_button_group</string>
</attribute>
</widget>
</item>
<item>
<widget class="QRadioButton" name="CAT_8_bit_radio_button">
<property name="text">
<string>E&ight</string>
</property>
<property name="checked">
2018-03-16 18:00:33 -04:00
<bool>false</bool>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_data_bits_button_group</string>
</attribute>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QGroupBox" name="CAT_stop_bits_group_box">
<property name="toolTip">
2015-03-26 18:34:59 -04:00
<string><html><head/><body><p>Number of stop bits used when communicating with your radio's CAT interface</p><p>(consult you radio's manual for details).</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="title">
<string>Stop Bits</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_2">
2018-03-16 18:00:33 -04:00
<item>
<widget class="QRadioButton" name="CAT_default_stop_bit_radio_button">
<property name="text">
<string>Default</string>
</property>
<property name="checked">
<bool>true</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_stop_bits_button_group</string>
</attribute>
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item>
<widget class="QRadioButton" name="CAT_one_stop_bit_radio_button">
<property name="text">
<string>On&e</string>
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_stop_bits_button_group</string>
</attribute>
</widget>
</item>
<item>
<widget class="QRadioButton" name="CAT_two_stop_bit_radio_button">
<property name="text">
<string>T&wo</string>
</property>
<property name="checked">
2018-03-16 18:00:33 -04:00
<bool>false</bool>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_stop_bits_button_group</string>
</attribute>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QGroupBox" name="CAT_handshake_group_box">
<property name="toolTip">
2015-03-26 18:34:59 -04:00
<string><html><head/><body><p>Flow control protocol used between this computer and your radio's CAT interface (usually &quot;None&quot; but some require &quot;Hardware&quot;).</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="title">
<string>Handshake</string>
</property>
<layout class="QGridLayout" name="gridLayout_11">
<item row="0" column="0">
2018-03-16 18:00:33 -04:00
<widget class="QRadioButton" name="CAT_handshake_default_radio_button">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="text">
2018-03-16 18:00:33 -04:00
<string>Default</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="checked">
<bool>true</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_handshake_button_group</string>
</attribute>
</widget>
</item>
<item row="0" column="1">
2018-03-16 18:00:33 -04:00
<widget class="QRadioButton" name="CAT_handshake_none_radio_button">
<property name="text">
<string>&None</string>
</property>
<property name="checked">
<bool>false</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_handshake_button_group</string>
</attribute>
</widget>
</item>
<item row="1" column="0">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<widget class="QRadioButton" name="CAT_handshake_xon_radio_button">
<property name="toolTip">
<string>Software flow control (very rare on CAT interfaces).</string>
</property>
<property name="text">
<string>XON/XOFF</string>
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_handshake_button_group</string>
</attribute>
</widget>
</item>
2018-03-16 18:00:33 -04:00
<item row="1" column="1">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<widget class="QRadioButton" name="CAT_handshake_hardware_radio_button">
<property name="toolTip">
<string>Flow control using the RTS and CTS RS-232 control lines
not often used but some radios have it as an option and
a few, particularly some Kenwood rigs, require it).</string>
</property>
<property name="text">
<string>&Hardware</string>
</property>
<attribute name="buttonGroup">
<string notr="true">CAT_handshake_button_group</string>
</attribute>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QGroupBox" name="CAT_control_lines_group_box">
<property name="toolTip">
<string>Special control of CAT port control lines.</string>
</property>
<property name="title">
<string>Force Control Lines</string>
</property>
2015-04-14 06:54:14 -04:00
<property name="checked">
<bool>false</bool>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<layout class="QHBoxLayout" name="horizontalLayout_8">
<item>
2015-09-09 08:16:22 -04:00
<layout class="QFormLayout" name="formLayout_8">
<item row="0" column="1">
<widget class="QComboBox" name="force_DTR_combo_box">
<item>
<property name="text">
<string/>
</property>
</item>
<item>
<property name="text">
<string>High</string>
</property>
</item>
<item>
<property name="text">
<string>Low</string>
</property>
</item>
</widget>
</item>
2018-03-16 18:00:33 -04:00
<item row="0" column="0">
<widget class="QLabel" name="force_DTR_label">
<property name="text">
<string>DTR:</string>
</property>
<property name="buddy">
<cstring>force_DTR_combo_box</cstring>
</property>
</widget>
</item>
2015-09-09 08:16:22 -04:00
</layout>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</item>
<item>
2015-09-09 08:16:22 -04:00
<layout class="QFormLayout" name="formLayout_9">
<item row="0" column="0">
<widget class="QLabel" name="force_RTS_label">
<property name="text">
<string>RTS:</string>
</property>
<property name="buddy">
<cstring>force_RTS_combo_box</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QComboBox" name="force_RTS_combo_box">
<item>
<property name="text">
<string/>
</property>
</item>
<item>
<property name="text">
<string>High</string>
</property>
</item>
<item>
<property name="text">
<string>Low</string>
</property>
</item>
</widget>
</item>
</layout>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</item>
</layout>
</widget>
</item>
</layout>
</widget>
</item>
</layout>
</widget>
</item>
<item row="6" column="2">
<widget class="Line" name="line_6">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
</widget>
</item>
<item row="1" column="1" rowspan="12">
<widget class="Line" name="line">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
</widget>
</item>
<item row="1" column="2">
<widget class="QGroupBox" name="PTT_method_group_box">
2015-02-16 17:08:54 -05:00
<property name="sizePolicy">
<sizepolicy hsizetype="Expanding" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="toolTip">
<string>How this program activates the PTT on your radio</string>
</property>
<property name="title">
<string>PTT Method</string>
</property>
<layout class="QGridLayout" name="gridLayout_2">
<item row="0" column="0">
<widget class="QRadioButton" name="PTT_VOX_radio_button">
<property name="toolTip">
2015-03-26 18:34:59 -04:00
<string><html><head/><body><p>No PTT activation, instead the radio's automatic VOX is used to key the transmitter.</p><p>Use this if you have no radio interface hardware.</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
<string>VO&X</string>
</property>
<attribute name="buttonGroup">
<string notr="true">PTT_method_button_group</string>
</attribute>
</widget>
</item>
<item row="0" column="1">
<widget class="QRadioButton" name="PTT_DTR_radio_button">
<property name="toolTip">
2016-04-06 13:11:41 -04:00
<string><html><head/><body><p>Use the RS-232 DTR control line to toggle your radio's PTT, requires hardware to inteface the line.</p><p>Some commercial interface units also use this method.</p><p>The DTR control line of the CAT serial port may be used for this or a DTR control line on a different serial port may be used.</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
<string>&DTR</string>
</property>
<property name="checked">
<bool>true</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">PTT_method_button_group</string>
</attribute>
</widget>
</item>
<item row="1" column="0">
<widget class="QRadioButton" name="PTT_CAT_radio_button">
<property name="toolTip">
<string>Some radios support PTT via CAT commands,
use this option if your radio supports it and you have no
other hardware interface for PTT.</string>
</property>
<property name="text">
<string>C&AT</string>
</property>
<attribute name="buttonGroup">
<string notr="true">PTT_method_button_group</string>
</attribute>
</widget>
</item>
<item row="1" column="1">
<widget class="QRadioButton" name="PTT_RTS_radio_button">
<property name="toolTip">
2016-04-06 13:11:41 -04:00
<string><html><head/><body><p>Use the RS-232 RTS control line to toggle your radio's PTT, requires hardware to inteface the line.</p><p>Some commercial interface units also use this method.</p><p>The RTS control line of the CAT serial port may be used for this or a RTS control line on a different serial port may be used. Note that this option is not available on the CAT serial port when hardware flow control is used.</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
<string>R&TS</string>
</property>
<attribute name="buttonGroup">
<string notr="true">PTT_method_button_group</string>
</attribute>
</widget>
</item>
<item row="2" column="0" rowspan="2" colspan="2">
<layout class="QFormLayout" name="formLayout_4">
2015-02-16 17:39:39 -05:00
<property name="fieldGrowthPolicy">
<enum>QFormLayout::ExpandingFieldsGrow</enum>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item row="0" column="0">
<widget class="QLabel" name="PTT_port_label">
<property name="text">
<string>Port:</string>
</property>
<property name="buddy">
<cstring>PTT_port_combo_box</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QComboBox" name="PTT_port_combo_box">
<property name="sizePolicy">
2015-02-16 17:56:13 -05:00
<sizepolicy hsizetype="MinimumExpanding" vsizetype="Fixed">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
2016-04-06 13:11:41 -04:00
<string><html><head/><body><p>Select the RS-232 serial port utilised for PTT control, this option is available when DTR or RTS is selected above as a transmit method.</p><p>This port can be the same one as the one used for CAT control.</p><p>For some interface types the special value CAT may be chosen, this is used for non-serial CAT interfaces that can control serial port control lines remotely (OmniRig for example).</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="editable">
<bool>true</bool>
</property>
2015-11-22 14:17:06 -05:00
<property name="currentText">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<string/>
</property>
<property name="currentIndex">
<number>-1</number>
</property>
<property name="insertPolicy">
<enum>QComboBox::NoInsert</enum>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</widget>
</item>
<item row="5" column="2">
<widget class="QGroupBox" name="mode_group_box">
<property name="toolTip">
<string>Modulation mode selected on radio.</string>
</property>
<property name="title">
<string>Mode</string>
</property>
<layout class="QGridLayout" name="gridLayout_10">
<item row="0" column="1">
<widget class="QRadioButton" name="mode_USB_radio_button">
<property name="toolTip">
2015-03-26 18:34:59 -04:00
<string><html><head/><body><p>USB is usually the correct modulation mode,</p><p>unless the radio has a special data or packet mode setting</p><p>for AFSK operation.</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
<string>US&B</string>
</property>
<property name="checked">
<bool>true</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">TX_mode_button_group</string>
</attribute>
</widget>
</item>
<item row="0" column="0">
<widget class="QRadioButton" name="mode_none_radio_button">
<property name="toolTip">
<string>Don't allow the program to set the radio mode
(not recommended but use if the wrong mode
or bandwidth is selected).</string>
</property>
<property name="text">
<string>None</string>
</property>
<attribute name="buttonGroup">
<string notr="true">TX_mode_button_group</string>
</attribute>
</widget>
</item>
<item row="0" column="2">
<widget class="QRadioButton" name="mode_data_radio_button">
<property name="toolTip">
<string>If this is availabe then it is usually the correct mode for this program.</string>
</property>
<property name="text">
<string>Data/P&kt</string>
</property>
<attribute name="buttonGroup">
<string notr="true">TX_mode_button_group</string>
</attribute>
</widget>
</item>
</layout>
</widget>
</item>
<item row="3" column="2">
<widget class="QGroupBox" name="TX_audio_source_group_box">
<property name="toolTip">
<string>Some radios can select the audio input using a CAT command,
this setting allows you to select which audio input will be used
(if it is available then generally the Rear/Data option is best).</string>
</property>
<property name="title">
<string>Transmit Audio Source</string>
</property>
<layout class="QGridLayout" name="gridLayout_7">
<item row="0" column="0">
<widget class="QRadioButton" name="TX_source_data_radio_button">
<property name="text">
<string>Rear&/Data</string>
</property>
<attribute name="buttonGroup">
<string notr="true">TX_audio_source_button_group</string>
</attribute>
</widget>
</item>
<item row="0" column="1">
<widget class="QRadioButton" name="TX_source_mic_radio_button">
<property name="text">
<string>&Front/Mic</string>
</property>
<property name="checked">
<bool>true</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">TX_audio_source_button_group</string>
</attribute>
</widget>
</item>
</layout>
</widget>
</item>
<item row="9" column="2">
<spacer name="verticalSpacer_2">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
2017-07-10 14:22:12 -04:00
<width>0</width>
<height>0</height>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</size>
</property>
</spacer>
</item>
<item row="2" column="2">
<widget class="Line" name="line_3">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
</widget>
</item>
<item row="11" column="2">
<spacer name="verticalSpacer_7">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
2017-07-10 14:22:12 -04:00
<width>0</width>
<height>0</height>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</size>
</property>
</spacer>
</item>
<item row="0" column="0" colspan="3">
<layout class="QHBoxLayout" name="horizontalLayout_7">
<item>
<widget class="QLabel" name="rig_label">
<property name="text">
<string>Rig:</string>
</property>
<property name="buddy">
<cstring>rig_combo_box</cstring>
</property>
</widget>
</item>
<item>
<widget class="QComboBox" name="rig_combo_box">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Fixed">
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="CAT_poll_interval_label">
<property name="text">
2014-07-25 15:34:48 -04:00
<string>Poll Interval:</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="buddy">
<cstring>CAT_poll_interval_spin_box</cstring>
</property>
</widget>
</item>
<item>
<widget class="QSpinBox" name="CAT_poll_interval_spin_box">
2016-04-06 13:11:58 -04:00
<property name="toolTip">
2016-04-23 19:40:05 -04:00
<string><html><head/><body><p>Interval to poll rig for status. Longer intervals will mean that changes to the rig will take longer to be detected.</p></body></html></string>
2016-04-06 13:11:58 -04:00
</property>
2014-07-25 15:34:48 -04:00
<property name="suffix">
<string> s</string>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="minimum">
<number>1</number>
</property>
</widget>
</item>
</layout>
</item>
<item row="4" column="2">
<widget class="Line" name="line_4">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
</widget>
</item>
<item row="10" column="2">
<layout class="QHBoxLayout" name="horizontalLayout_11">
<item>
<widget class="QPushButton" name="test_CAT_push_button">
<property name="toolTip">
2016-04-28 19:43:40 -04:00
<string><html><head/><body><p>Attempt to connect to the radio with these settings.</p><p>The button will turn green if the connection is successful or red if there is a problem.</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
<string>Test CAT</string>
</property>
</widget>
</item>
<item>
<spacer name="horizontalSpacer_3">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeType">
<enum>QSizePolicy::Preferred</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>40</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item>
<widget class="QPushButton" name="test_PTT_push_button">
<property name="toolTip">
<string>Attempt to activate the transmitter.
Click again to deactivate. Normally no power should be
output since there is no audio being generated at this time.
Check that any Tx indication on your radio and/or your
radio interface behave as expected.</string>
2015-04-26 12:41:12 -04:00
</property>
<property name="styleSheet">
<string notr="true">QPushButton:checked {
background-color: red;
border-style : outset;
border-width: 1px;
border-radius: 5px;
border-color: black;
min-width: 5em;
padding: 3px;
}</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="text">
<string>Test PTT</string>
</property>
2015-04-26 12:41:12 -04:00
<property name="checkable">
<bool>true</bool>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</widget>
</item>
</layout>
</item>
<item row="8" column="2">
<widget class="QGroupBox" name="split_operation_group_box">
<property name="title">
<string>Split Operation</string>
</property>
<layout class="QGridLayout" name="gridLayout_12">
2016-04-06 13:11:58 -04:00
<item row="0" column="2">
<widget class="QRadioButton" name="split_emulate_radio_button">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="text">
2016-04-06 13:11:58 -04:00
<string>Fake It</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<attribute name="buttonGroup">
<string notr="true">split_mode_button_group</string>
</attribute>
</widget>
</item>
<item row="0" column="1">
<widget class="QRadioButton" name="split_rig_radio_button">
<property name="text">
<string>Rig</string>
</property>
<attribute name="buttonGroup">
<string notr="true">split_mode_button_group</string>
</attribute>
</widget>
</item>
2016-04-06 13:11:58 -04:00
<item row="0" column="0">
<widget class="QRadioButton" name="split_none_radio_button">
2016-01-06 12:24:17 -05:00
<property name="text">
2016-04-06 13:11:58 -04:00
<string>None</string>
2016-01-06 12:24:17 -05:00
</property>
<property name="checked">
<bool>true</bool>
</property>
2016-04-06 13:11:58 -04:00
<attribute name="buttonGroup">
<string notr="true">split_mode_button_group</string>
</attribute>
2016-01-06 12:24:17 -05:00
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</layout>
</widget>
</item>
2015-02-16 17:56:13 -05:00
<item row="12" column="0">
<spacer name="verticalSpacer_5">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
2017-07-10 14:22:12 -04:00
<width>0</width>
<height>0</height>
2015-02-16 17:56:13 -05:00
</size>
</property>
</spacer>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</layout>
</widget>
<widget class="QWidget" name="audio_tab">
<attribute name="title">
<string>A&udio</string>
</attribute>
<attribute name="toolTip">
<string>Audio interface settings</string>
</attribute>
2017-03-20 13:17:50 -04:00
<layout class="QVBoxLayout" name="verticalLayout_9">
2016-10-28 10:34:30 -04:00
<item>
2017-03-20 13:17:50 -04:00
<widget class="QGroupBox" name="soundcard_group_box">
<property name="toolTip">
<string>Souncard</string>
</property>
<property name="title">
<string>Soundcard</string>
</property>
<layout class="QGridLayout" name="gridLayout_6">
<item row="1" column="1">
<widget class="QComboBox" name="sound_output_combo_box">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Fixed">
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
<string>Select the audio CODEC to use for transmitting.
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
If this is your default device for system sounds then
ensure that all system sounds are disabled otherwise
you will broadcast any systems sounds generated during
transmitting periods.</string>
2017-03-20 13:17:50 -04:00
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QComboBox" name="sound_input_combo_box">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Fixed">
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
<string>Select the audio CODEC to use for receiving.</string>
</property>
</widget>
</item>
<item row="0" column="0">
<widget class="QLabel" name="sound_input_label">
<property name="text">
<string>&Input:</string>
</property>
<property name="buddy">
<cstring>sound_input_combo_box</cstring>
</property>
</widget>
</item>
<item row="0" column="2">
<widget class="QComboBox" name="sound_input_channel_combo_box">
<property name="toolTip">
<string>Select the channel to use for receiving.</string>
</property>
2016-10-28 10:34:30 -04:00
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Mono</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Left</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Right</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Both</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
2017-03-20 13:17:50 -04:00
</widget>
</item>
<item row="1" column="2">
<widget class="QComboBox" name="sound_output_channel_combo_box">
<property name="toolTip">
<string>Select the audio channel used for transmission.
Unless you have multiple radios connected on different
channels; then you will usually want to select mono or
both here.</string>
</property>
2016-10-28 10:34:30 -04:00
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Mono</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Left</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Right</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
<item>
2017-03-20 13:17:50 -04:00
<property name="text">
<string>Both</string>
</property>
2016-10-28 10:34:30 -04:00
</item>
2017-03-20 13:17:50 -04:00
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="sound_output_label">
<property name="text">
<string>Ou&tput:</string>
</property>
<property name="buddy">
<cstring>sound_output_combo_box</cstring>
</property>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QGroupBox" name="save_path_group_box">
<property name="toolTip">
<string>Save Directory</string>
</property>
<property name="title">
<string>Save Directory</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_5">
<item>
<widget class="QLabel" name="save_path_label">
<property name="text">
<string>Loc&ation:</string>
</property>
<property name="buddy">
<cstring>save_path_select_push_button</cstring>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="save_path_display_label">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Preferred">
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
<string>Path to which .WAV files are saved.</string>
</property>
<property name="autoFillBackground">
<bool>false</bool>
</property>
<property name="styleSheet">
<string notr="true">background-color: rgb(255, 255, 255);</string>
</property>
<property name="text">
<string>TextLabel</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="save_path_select_push_button">
<property name="toolTip">
<string>Click to select a different save directory for .WAV files.</string>
</property>
<property name="text">
<string>S&elect</string>
</property>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QGroupBox" name="azel_path_group_box">
<property name="toolTip">
<string>AzEl Directory</string>
</property>
<property name="title">
<string>AzEl Directory</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_10">
<item>
<widget class="QLabel" name="azel_path_label">
<property name="text">
<string>Location:</string>
</property>
<property name="buddy">
<cstring>azel_path_select_push_button</cstring>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="azel_path_display_label">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Preferred">
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="styleSheet">
<string notr="true">background-color: rgb(255, 255, 255);</string>
</property>
<property name="text">
<string>TextLabel</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="azel_path_select_push_button">
<property name="text">
<string>Select</string>
</property>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QGroupBox" name="split_operation_group_box_2">
<property name="toolTip">
<string>Power Memory By Band</string>
</property>
<property name="title">
<string>Remember power settings by band</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_13">
<item>
<widget class="QCheckBox" name="checkBoxPwrBandTxMemory">
<property name="toolTip">
<string>Enable power memory during transmit</string>
</property>
<property name="text">
<string>Transmit</string>
</property>
</widget>
</item>
<item>
<widget class="QCheckBox" name="checkBoxPwrBandTuneMemory">
<property name="toolTip">
<string>Enable power memory during tuning</string>
</property>
<property name="text">
<string>Tune</string>
</property>
</widget>
</item>
</layout>
</widget>
2016-10-28 10:34:30 -04:00
</item>
<item>
<spacer name="verticalSpacer_3">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
2017-07-10 14:22:12 -04:00
<width>0</width>
<height>0</height>
2016-10-28 10:34:30 -04:00
</size>
</property>
</spacer>
</item>
</layout>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</widget>
<widget class="QWidget" name="tx_macros_tab">
<attribute name="title">
<string>Tx &Macros</string>
</attribute>
<attribute name="toolTip">
<string>Canned free text messages setup</string>
</attribute>
<layout class="QGridLayout" name="gridLayout">
<item row="0" column="1">
<widget class="QPushButton" name="add_macro_push_button">
<property name="text">
<string>&Add</string>
</property>
</widget>
</item>
<item row="0" column="0">
2016-11-12 07:04:57 -05:00
<widget class="QLineEdit" name="add_macro_line_edit"/>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</item>
<item row="0" column="2">
<widget class="QPushButton" name="delete_macro_push_button">
<property name="text">
<string>&Delete</string>
</property>
</widget>
</item>
<item row="1" column="0" colspan="3">
<widget class="QListView" name="macros_list_view">
<property name="contextMenuPolicy">
<enum>Qt::ActionsContextMenu</enum>
</property>
2014-04-16 19:10:45 -04:00
<property name="toolTip">
<string>Drag and drop items to rearrange order
Right click for item specific actions
Click, SHIFT+Click and, CRTL+Click to select items</string>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="styleSheet">
<string notr="true">QListView {
show-decoration-selected: 1; /* make the selection span the entire width of the view */
}
QListView::item:alternate {
background: #EEEEEE;
}
QListView::item:selected {
border: 1px solid #6a6ea9;
}
QListView::item:selected:!active {
background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,
stop: 0 #ABAFE5, stop: 1 #8588B2);
}
QListView::item:selected:active {
background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,
stop: 0 #6a6ea9, stop: 1 #888dd9);
}
QListView::item:hover {
background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,
stop: 0 #FAFBFE, stop: 1 #DCDEF1);
}</string>
</property>
2014-04-16 19:10:45 -04:00
<property name="dragDropMode">
<enum>QAbstractItemView::InternalMove</enum>
</property>
<property name="defaultDropAction">
<enum>Qt::MoveAction</enum>
</property>
<property name="alternatingRowColors">
<bool>true</bool>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="selectionMode">
2014-04-16 19:10:45 -04:00
<enum>QAbstractItemView::ExtendedSelection</enum>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="uniformItemSizes">
<bool>true</bool>
</property>
</widget>
</item>
</layout>
</widget>
<widget class="QWidget" name="reporting_tab">
<attribute name="title">
<string>Reportin&g</string>
</attribute>
<attribute name="toolTip">
<string>Reporting and logging settings</string>
</attribute>
<layout class="QVBoxLayout" name="verticalLayout_5">
<item>
<widget class="QGroupBox" name="logging_group_box">
<property name="title">
<string>Logging</string>
</property>
2018-08-29 16:02:06 -04:00
<layout class="QGridLayout" name="gridLayout_14">
<item row="0" column="0">
<widget class="QCheckBox" name="prompt_to_log_check_box">
<property name="toolTip">
<string>The program will pop up a partially completed Log QSO dialog when you send a 73 or free text message.</string>
</property>
<property name="text">
<string>Promp&t me to log QSO</string>
</property>
</widget>
</item>
<item row="0" column="1">
<spacer name="horizontalSpacer_6">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>136</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item row="0" column="2">
<widget class="QLabel" name="label_13">
<property name="text">
<string>Op Call:</string>
</property>
2018-10-16 19:26:04 -04:00
<property name="buddy">
<cstring>opCallEntry</cstring>
</property>
2018-08-29 16:02:06 -04:00
</widget>
</item>
2018-10-02 11:48:12 -04:00
<item row="3" column="0">
<widget class="QCheckBox" name="report_in_comments_check_box">
2018-08-29 16:02:06 -04:00
<property name="toolTip">
2018-10-02 11:48:12 -04:00
<string>Some logging programs will not accept the type of reports
saved by this program.
Check this option to save the sent and received reports in the
comments field.</string>
</property>
<property name="text">
<string>d&B reports to comments</string>
2018-08-29 16:02:06 -04:00
</property>
</widget>
</item>
2018-10-02 11:48:12 -04:00
<item row="4" column="0" colspan="2">
<widget class="QCheckBox" name="clear_DX_check_box">
2018-08-29 16:02:06 -04:00
<property name="toolTip">
2018-10-02 11:48:12 -04:00
<string>Check this option to force the clearing of the DX Call
and DX Grid fields when a 73 or free text message is sent.</string>
2018-08-29 16:02:06 -04:00
</property>
<property name="text">
2018-10-02 11:48:12 -04:00
<string>Clear &DX call and grid after logging</string>
2018-08-29 16:02:06 -04:00
</property>
</widget>
</item>
<item row="2" column="0">
2018-10-02 11:48:12 -04:00
<widget class="QCheckBox" name="log_as_RTTY_check_box">
2018-08-29 16:02:06 -04:00
<property name="toolTip">
2018-10-09 15:40:38 -04:00
<string><html><head/><body><p>Some logging programs will not accept WSJT-X mode names.</p></body></html></string>
2018-08-29 16:02:06 -04:00
</property>
<property name="text">
2018-10-02 11:48:12 -04:00
<string>Con&vert mode to RTTY</string>
2018-08-29 16:02:06 -04:00
</property>
</widget>
</item>
2018-10-02 11:48:12 -04:00
<item row="0" column="3">
<widget class="QLineEdit" name="opCallEntry">
2018-08-29 16:02:06 -04:00
<property name="toolTip">
2018-10-02 11:48:12 -04:00
<string><html><head/><body><p>The callsign of the operator, if different from the station callsign.</p></body></html></string>
2018-08-29 16:02:06 -04:00
</property>
2018-10-02 11:48:12 -04:00
</widget>
</item>
<item row="1" column="0">
<widget class="QCheckBox" name="cbAutoLog">
2018-10-09 15:40:38 -04:00
<property name="toolTip">
<string><html><head/><body><p>Check to have QSOs logged automatically, when complete.</p></body></html></string>
</property>
2018-08-29 16:02:06 -04:00
<property name="text">
2019-01-09 09:45:41 -05:00
<string>Log automatically (contesting only)</string>
2018-08-29 16:02:06 -04:00
</property>
</widget>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</item>
</layout>
</widget>
</item>
<item>
<widget class="Line" name="line_8">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
</widget>
</item>
<item>
<widget class="QGroupBox" name="network_group_box">
<property name="title">
2015-04-15 12:40:49 -04:00
<string>Network Services</string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
2015-04-15 12:40:49 -04:00
<layout class="QGridLayout" name="gridLayout_17">
<item row="0" column="0">
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<widget class="QCheckBox" name="psk_reporter_check_box">
<property name="toolTip">
<string>The program can send your station details and all
decoded signals as spots to the http://pskreporter.info web site.
This is used for reverse beacon analysis which is very useful
for assessing propagation and system performance.</string>
</property>
<property name="text">
<string>Enable &PSK Reporter Spotting</string>
</property>
</widget>
</item>
</layout>
</widget>
</item>
2015-04-15 12:40:49 -04:00
<item>
<widget class="QGroupBox" name="groupBox_4">
<property name="title">
<string>UDP Server</string>
</property>
<layout class="QGridLayout" name="gridLayout_16">
<item row="0" column="0">
<layout class="QFormLayout" name="formLayout_6">
<property name="fieldGrowthPolicy">
<enum>QFormLayout::AllNonFixedFieldsGrow</enum>
</property>
<item row="0" column="0">
<widget class="QLabel" name="udp_server_label">
<property name="text">
<string>UDP Server:</string>
</property>
<property name="buddy">
<cstring>udp_server_line_edit</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QLineEdit" name="udp_server_line_edit">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Fixed">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
<string><html><head/><body><p>Optional hostname of network service to receive decodes.</p><p>Formats:</p><ul style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" margin-top:12px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">hostname</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv4 address</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv6 address</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv4 multicast group address</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv6 multicast group address</li></ul><p>Clearing this field will disable the broadcasting of UDP status updates.</p></body></html></string>
</property>
<property name="inputMethodHints">
<set>Qt::ImhDigitsOnly</set>
</property>
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="label_6">
<property name="text">
<string>UDP Server port number:</string>
</property>
<property name="buddy">
<cstring>udp_server_port_spin_box</cstring>
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QSpinBox" name="udp_server_port_spin_box">
<property name="toolTip">
<string><html><head/><body><p>Enter the service port number of the UDP server that WSJT-X should send updates to. If this is zero no updates will be broadcast.</p></body></html></string>
</property>
<property name="minimum">
<number>0</number>
</property>
<property name="maximum">
<number>65534</number>
</property>
</widget>
</item>
</layout>
</item>
<item row="0" column="1">
<layout class="QVBoxLayout" name="verticalLayout_11">
<item>
<widget class="QCheckBox" name="accept_udp_requests_check_box">
<property name="toolTip">
<string><html><head/><body><p>With this enabled WSJT-X will accept certain requests back from a UDP server that receives decode messages.</p></body></html></string>
</property>
<property name="text">
<string>Accept UDP requests</string>
</property>
</widget>
</item>
<item>
<widget class="QCheckBox" name="udpWindowToFront">
<property name="toolTip">
<string><html><head/><body><p>Indicate acceptance of an incoming UDP request. The effect of this option varies depending on the operating system and window manager, its intent is to notify the acceptance of an incoming UDP request even if this application is minimized or hidden.</p></body></html></string>
</property>
<property name="text">
<string>Notify on accepted UDP request</string>
</property>
</widget>
</item>
<item>
<widget class="QCheckBox" name="udpWindowRestore">
<property name="toolTip">
<string><html><head/><body><p>Restore the window from minimized if an UDP request is accepted.</p></body></html></string>
</property>
<property name="text">
<string>Accepted UDP request restores window</string>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</widget>
</item>
2017-11-29 16:05:27 -05:00
<item>
<widget class="QGroupBox" name="n1mm_group_box">
<property name="title">
<string>N1MM Logger+ Broadcasts</string>
</property>
<layout class="QFormLayout" name="formLayout_15">
2018-08-29 16:02:06 -04:00
<item row="0" column="0" colspan="2">
2017-11-29 16:05:27 -05:00
<widget class="QCheckBox" name="enable_n1mm_broadcast_check_box">
<property name="toolTip">
<string><html><head/><body><p>When checked, WSJT-X will broadcast a logged contact in ADIF format to the configured hostname and port. </p></body></html></string>
</property>
<property name="text">
<string>Enable logged contact ADIF broadcast</string>
</property>
</widget>
</item>
<item row="1" column="0">
2018-08-29 16:02:06 -04:00
<widget class="QLabel" name="n1mm_server_name_label">
<property name="text">
<string><html><head/><body><p>N1MM Server name or IP address:</p></body></html></string>
</property>
2018-10-16 19:26:04 -04:00
<property name="buddy">
<cstring>n1mm_server_name_line_edit</cstring>
</property>
2018-08-29 16:02:06 -04:00
</widget>
</item>
<item row="1" column="1">
<widget class="QLineEdit" name="n1mm_server_name_line_edit">
<property name="toolTip">
<string><html><head/><body><p>Optional host name of N1MM Logger+ program to receive ADIF UDP broadcasts. This is usually 'localhost' or ip address 127.0.0.1</p><p>Formats:</p><ul style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" margin-top:12px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">hostname</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv4 address</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv6 address</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv4 multicast group address</li><li style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPv6 multicast group address</li></ul><p>Clearing this field will disable broadcasting of ADIF information via UDP.</p></body></html></string>
</property>
</widget>
</item>
<item row="2" column="0">
<widget class="QLabel" name="n1mm_server_port_label">
<property name="text">
<string><html><head/><body><p>N1MM Server port number:</p></body></html></string>
</property>
2018-10-16 19:26:04 -04:00
<property name="buddy">
<cstring>n1mm_server_port_spin_box</cstring>
</property>
2018-08-29 16:02:06 -04:00
</widget>
</item>
<item row="2" column="1">
<widget class="QSpinBox" name="n1mm_server_port_spin_box">
<property name="toolTip">
<string><html><head/><body><p>Enter the port number that WSJT-X should use for UDP broadcasts of ADIF log information. For N1MM Logger+, this value should be 2333. If this is zero, no updates will be broadcast.</p></body></html></string>
</property>
</widget>
2017-11-29 16:05:27 -05:00
</item>
</layout>
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item>
<spacer name="verticalSpacer_4">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
2017-07-10 14:22:12 -04:00
<width>0</width>
<height>0</height>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</size>
</property>
</spacer>
</item>
</layout>
</widget>
<widget class="QWidget" name="frequencies_tab">
<attribute name="title">
<string>Frequencies</string>
</attribute>
<attribute name="toolTip">
<string>Default frequencies and band specific station details setup</string>
</attribute>
<layout class="QVBoxLayout" name="verticalLayout_10">
2017-07-07 19:11:41 -04:00
<item>
<widget class="QGroupBox" name="groupBox_3">
<property name="toolTip">
2017-10-13 10:36:10 -04:00
<string><html><head/><body><p>See &quot;Frequency Calibration&quot; in the WSJT-X User Guide for details of how to determine these parameters for your radio.</p></body></html></string>
2017-07-07 19:11:41 -04:00
</property>
<property name="title">
<string>Frequency Calibration</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_6">
<item>
<layout class="QFormLayout" name="formLayout_7">
<item row="0" column="0">
<widget class="QLabel" name="label_8">
<property name="text">
<string>Slope:</string>
</property>
<property name="buddy">
<cstring>calibration_slope_ppm_spin_box</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QDoubleSpinBox" name="calibration_slope_ppm_spin_box">
<property name="alignment">
<set>Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter</set>
</property>
<property name="suffix">
<string> ppm</string>
</property>
<property name="decimals">
<number>4</number>
</property>
<property name="minimum">
<double>-999.999900000000025</double>
</property>
<property name="maximum">
<double>999.999900000000025</double>
</property>
<property name="singleStep">
<double>0.100000000000000</double>
</property>
<property name="value">
<double>0.000000000000000</double>
</property>
</widget>
</item>
</layout>
</item>
<item>
<layout class="QFormLayout" name="formLayout_14">
<item row="0" column="0">
<widget class="QLabel" name="label_7">
<property name="text">
<string>Intercept:</string>
</property>
<property name="buddy">
<cstring>calibration_intercept_spin_box</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QDoubleSpinBox" name="calibration_intercept_spin_box">
<property name="alignment">
<set>Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter</set>
</property>
<property name="suffix">
<string> Hz</string>
</property>
<property name="decimals">
<number>2</number>
</property>
<property name="minimum">
<double>-99999.990000000005239</double>
</property>
<property name="maximum">
<double>99999.990000000005239</double>
</property>
<property name="singleStep">
<double>0.100000000000000</double>
</property>
</widget>
</item>
</layout>
</item>
<item>
<spacer name="horizontalSpacer_4">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
2017-07-28 11:50:13 -04:00
<property name="sizeHint" stdset="0">
<size>
<width>0</width>
<height>0</height>
</size>
</property>
2017-07-07 19:11:41 -04:00
</spacer>
</item>
</layout>
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<item>
<widget class="QGroupBox" name="groupBox">
<property name="title">
<string>Working Frequencies</string>
</property>
2015-05-28 19:22:17 -04:00
<layout class="QHBoxLayout" name="horizontalLayout">
<item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<widget class="QTableView" name="frequencies_table_view">
2015-05-28 19:22:17 -04:00
<property name="sizePolicy">
<sizepolicy hsizetype="Expanding" vsizetype="Expanding">
<horstretch>1</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<property name="contextMenuPolicy">
<enum>Qt::ActionsContextMenu</enum>
</property>
<property name="toolTip">
2017-07-07 19:11:41 -04:00
<string><html><head/><body><p>Right click to maintain the working frequencies list.</p></body></html></string>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</property>
<property name="dragDropMode">
<enum>QAbstractItemView::DragOnly</enum>
</property>
<property name="alternatingRowColors">
<bool>true</bool>
</property>
<property name="selectionBehavior">
<enum>QAbstractItemView::SelectRows</enum>
</property>
<property name="sortingEnabled">
<bool>true</bool>
</property>
<attribute name="horizontalHeaderStretchLastSection">
<bool>true</bool>
</attribute>
<attribute name="verticalHeaderVisible">
<bool>false</bool>
</attribute>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QGroupBox" name="groupBox_2">
<property name="title">
<string>Station Information</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_3">
<item>
<widget class="QTableView" name="stations_table_view">
<property name="contextMenuPolicy">
<enum>Qt::ActionsContextMenu</enum>
</property>
<property name="acceptDrops">
<bool>true</bool>
</property>
<property name="toolTip">
<string>Items may be edited.
Right click for insert and delete options.</string>
</property>
<property name="dragEnabled">
<bool>true</bool>
</property>
<property name="dragDropOverwriteMode">
<bool>true</bool>
</property>
<property name="dragDropMode">
<enum>QAbstractItemView::DragDrop</enum>
</property>
<property name="defaultDropAction">
<enum>Qt::MoveAction</enum>
</property>
<property name="alternatingRowColors">
<bool>true</bool>
</property>
<property name="selectionMode">
<enum>QAbstractItemView::ExtendedSelection</enum>
</property>
<property name="selectionBehavior">
<enum>QAbstractItemView::SelectRows</enum>
</property>
<property name="sortingEnabled">
<bool>true</bool>
</property>
<property name="wordWrap">
<bool>true</bool>
</property>
2015-05-28 19:22:17 -04:00
<attribute name="horizontalHeaderCascadingSectionResizes">
<bool>true</bool>
</attribute>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<attribute name="horizontalHeaderStretchLastSection">
<bool>true</bool>
</attribute>
<attribute name="verticalHeaderVisible">
<bool>false</bool>
</attribute>
</widget>
</item>
</layout>
</widget>
</item>
</layout>
</widget>
2016-06-11 14:50:27 -04:00
<widget class="QWidget" name="colors_tab">
2015-02-10 19:50:35 -05:00
<attribute name="title">
<string>Colors</string>
</attribute>
2018-10-16 19:26:04 -04:00
<layout class="QVBoxLayout" name="verticalLayout_7">
<item>
<widget class="QGroupBox" name="groupBox_12">
<property name="title">
<string>Decode Highlightling</string>
2018-09-01 15:42:02 -04:00
</property>
2018-10-16 19:26:04 -04:00
<layout class="QVBoxLayout" name="verticalLayout_8">
<item>
<widget class="DecodeHighlightingListView" name="highlighting_list_view">
<property name="sizePolicy">
<sizepolicy hsizetype="Expanding" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="contextMenuPolicy">
<enum>Qt::ActionsContextMenu</enum>
</property>
<property name="acceptDrops">
<bool>true</bool>
</property>
<property name="toolTip">
2018-11-28 20:03:44 -05:00
<string><html><head/><body><p>Enable or disable using the check boxes and right-click an item to change or unset the foreground color, background color, or reset the item to default values. Drag and drop the items to change their priority, higher in the list is higher in priority.</p><p>Note that each foreground or background color may be either set or unset, unset means that it is not allocated for that item's type and lower priority items may apply.</p></body></html></string>
2018-10-16 19:26:04 -04:00
</property>
<property name="sizeAdjustPolicy">
<enum>QAbstractScrollArea::AdjustToContents</enum>
</property>
<property name="editTriggers">
<set>QAbstractItemView::NoEditTriggers</set>
</property>
<property name="dragEnabled">
<bool>true</bool>
</property>
<property name="dragDropMode">
<enum>QAbstractItemView::InternalMove</enum>
</property>
<property name="defaultDropAction">
<enum>Qt::MoveAction</enum>
</property>
<property name="selectionMode">
<enum>QAbstractItemView::SingleSelection</enum>
</property>
<property name="resizeMode">
<enum>QListView::Adjust</enum>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="reset_highlighting_to_defaults_push_button">
<property name="toolTip">
<string><html><head/><body><p>Push to reset all highlight items above to default values and priorities.</p></body></html></string>
</property>
<property name="text">
<string>Reset Highlighting</string>
</property>
</widget>
</item>
2018-10-24 19:00:19 -04:00
<item>
2018-11-30 11:26:46 -05:00
<layout class="QHBoxLayout" name="horizontalLayout_15">
<item>
2018-10-24 19:00:19 -04:00
<widget class="QCheckBox" name="highlight_by_mode_check_box">
<property name="toolTip">
<string><html><head/><body><p>Check to indicate new DXCC entities, grid squares, and callsigns per mode.</p></body></html></string>
</property>
<property name="text">
<string>Highlight by Mode</string>
</property>
</widget>
</item>
2018-11-30 11:26:46 -05:00
<item>
<spacer name="horizontalSpacer_5">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>40</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item>
<widget class="QPushButton" name="rescan_log_push_button">
2018-12-02 11:07:46 -05:00
<property name="toolTip">
<string><html><head/><body><p>Click to scan the wsjtx_log.adi ADIF file again for worked before information</p></body></html></string>
</property>
2018-11-30 11:26:46 -05:00
<property name="text">
<string>Rescan ADIF Log</string>
</property>
</widget>
</item>
2018-10-24 19:00:19 -04:00
</layout>
</item>
2018-10-16 19:26:04 -04:00
</layout>
</widget>
2017-03-20 13:17:50 -04:00
</item>
2018-10-16 19:26:04 -04:00
<item>
<widget class="QGroupBox" name="groupBox_11">
<property name="toolTip">
<string><html><head/><body><p>Controls for Logbook of the World user lookup.</p></body></html></string>
2017-03-20 13:17:50 -04:00
</property>
2018-10-16 19:26:04 -04:00
<property name="title">
<string>Logbook of the World User Validation</string>
2017-03-20 13:17:50 -04:00
</property>
2018-10-16 19:26:04 -04:00
<layout class="QFormLayout" name="formLayout_18">
<item row="2" column="0">
<widget class="QLabel" name="label_14">
<property name="text">
<string>Age of last upload less than:</string>
</property>
<property name="buddy">
<cstring>LotW_days_since_upload_spin_box</cstring>
</property>
</widget>
</item>
<item row="2" column="1">
<widget class="QSpinBox" name="LotW_days_since_upload_spin_box">
<property name="toolTip">
<string><html><head/><body><p>Adjust this spin box to set the age threshold of LotW user's last upload date that is accepted as a current LotW user.</p></body></html></string>
</property>
<property name="suffix">
<string> days</string>
</property>
<property name="minimum">
<number>0</number>
</property>
<property name="maximum">
<number>9999</number>
</property>
<property name="value">
<number>365</number>
</property>
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="label_15">
<property name="text">
<string>Users CSV file URL:</string>
</property>
<property name="buddy">
<cstring>LotW_CSV_URL_line_edit</cstring>
</property>
</widget>
</item>
<item row="1" column="1">
<layout class="QHBoxLayout" name="horizontalLayout_20">
<item>
<widget class="QLineEdit" name="LotW_CSV_URL_line_edit">
<property name="toolTip">
<string><html><head/><body><p>URL of the ARRL LotW user's last upload dates and times data file which is used to highlight decodes from stations that are known to upload their log file to LotW.</p></body></html></string>
</property>
<property name="text">
<string>https://lotw.arrl.org/lotw-user-activity.csv</string>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="LotW_CSV_fetch_push_button">
<property name="toolTip">
<string><html><head/><body><p>Push this button to fetch the latest LotW user's upload date and time data file.</p></body></html></string>
</property>
<property name="text">
<string>Fetch Now</string>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</widget>
2017-03-20 13:17:50 -04:00
</item>
2018-10-16 19:26:04 -04:00
<item>
2018-10-24 19:00:19 -04:00
<spacer name="horizontalSpacer_8">
2017-03-20 13:17:50 -04:00
<property name="orientation">
2018-10-24 19:00:19 -04:00
<enum>Qt::Horizontal</enum>
2017-03-20 13:17:50 -04:00
</property>
2017-07-28 11:50:13 -04:00
<property name="sizeHint" stdset="0">
<size>
2018-10-24 19:00:19 -04:00
<width>0</width>
<height>0</height>
2017-07-28 11:50:13 -04:00
</size>
</property>
2017-03-20 13:17:50 -04:00
</spacer>
</item>
2018-10-16 19:26:04 -04:00
<item>
2018-10-24 19:00:19 -04:00
<spacer name="verticalSpacer_6">
2017-03-20 13:17:50 -04:00
<property name="orientation">
2018-10-24 19:00:19 -04:00
<enum>Qt::Vertical</enum>
2017-03-20 13:17:50 -04:00
</property>
2017-07-28 11:50:13 -04:00
<property name="sizeHint" stdset="0">
<size>
2018-10-24 19:00:19 -04:00
<width>20</width>
<height>40</height>
2017-07-28 11:50:13 -04:00
</size>
</property>
2017-03-20 13:17:50 -04:00
</spacer>
</item>
</layout>
2015-02-10 19:50:35 -05:00
</widget>
2016-06-11 14:50:27 -04:00
<widget class="QWidget" name="advanced_tab">
2015-11-17 20:28:12 -05:00
<attribute name="title">
<string>Advanced</string>
</attribute>
2015-11-23 13:05:36 -05:00
<layout class="QGridLayout" name="gridLayout_9">
2018-07-02 15:19:17 -04:00
<item row="0" column="0">
<widget class="QGroupBox" name="groupBox_6">
<property name="toolTip">
<string><html><head/><body><p>User-selectable parameters for JT65 VHF/UHF/Microwave decoding.</p></body></html></string>
</property>
<property name="title">
<string>JT65 VHF/UHF/Microwave decoding parameters</string>
</property>
<layout class="QFormLayout" name="formLayout_11">
2018-08-29 16:02:06 -04:00
<item row="0" column="0">
2018-07-02 15:19:17 -04:00
<widget class="QLabel" name="label_2">
<property name="text">
<string>Random erasure patterns:</string>
</property>
<property name="buddy">
<cstring>sbNtrials</cstring>
</property>
</widget>
</item>
2018-08-29 16:02:06 -04:00
<item row="0" column="1">
2018-07-02 15:19:17 -04:00
<widget class="QSpinBox" name="sbNtrials">
<property name="toolTip">
<string><html><head/><body><p>Maximum number of erasure patterns for stochastic soft-decision Reed Solomon decoder is 10^(n/2).</p></body></html></string>
</property>
<property name="minimum">
<number>0</number>
</property>
<property name="maximum">
<number>12</number>
</property>
<property name="value">
<number>6</number>
</property>
</widget>
</item>
2018-08-29 16:02:06 -04:00
<item row="1" column="0">
2018-07-02 15:19:17 -04:00
<widget class="QLabel" name="label_4">
<property name="text">
<string>Aggressive decoding level:</string>
</property>
<property name="buddy">
<cstring>sbAggressive</cstring>
</property>
</widget>
</item>
2018-08-29 16:02:06 -04:00
<item row="1" column="1">
2018-07-02 15:19:17 -04:00
<widget class="QSpinBox" name="sbAggressive">
<property name="toolTip">
<string><html><head/><body><p>Higher levels will increase the probability of decoding, but will also increase probability of a false decode.</p></body></html></string>
</property>
<property name="maximum">
<number>10</number>
</property>
</widget>
</item>
2018-08-29 16:02:06 -04:00
<item row="2" column="0">
2018-07-02 15:19:17 -04:00
<widget class="QCheckBox" name="cbTwoPass">
<property name="text">
<string>Two-pass decoding</string>
</property>
<property name="checked">
<bool>true</bool>
</property>
</widget>
</item>
</layout>
</widget>
</item>
2018-10-27 18:21:29 -04:00
<item row="1" column="0" colspan="2">
<widget class="QGroupBox" name="gbSpecialOpActivity">
2017-10-30 11:18:54 -04:00
<property name="title">
2018-08-30 11:45:57 -04:00
<string>Special operating activity: Generation of FT8 and MSK144 messages</string>
2017-10-30 11:18:54 -04:00
</property>
2018-10-27 18:21:29 -04:00
<property name="checkable">
<bool>true</bool>
</property>
<property name="checked">
<bool>false</bool>
</property>
2018-12-01 19:51:41 -05:00
<layout class="QGridLayout" name="gridLayout_15" columnstretch="1,0,0,0">
<item row="0" column="3">
<widget class="QRadioButton" name="rbHound">
<property name="toolTip">
<string><html><head/><body><p>FT8 DXpedition mode: Hound operator calling the DX.</p></body></html></string>
2018-10-09 15:40:38 -04:00
</property>
2018-12-01 19:51:41 -05:00
<property name="text">
<string>Hound</string>
2018-08-29 16:02:06 -04:00
</property>
2018-12-01 19:51:41 -05:00
<property name="checked">
<bool>true</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">special_op_activity_button_group</string>
</attribute>
</widget>
2018-08-29 16:02:06 -04:00
</item>
2018-12-01 19:51:41 -05:00
<item row="1" column="0">
<widget class="QRadioButton" name="rbNA_VHF_Contest">
<property name="sizePolicy">
<sizepolicy hsizetype="Minimum" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
<string><html><head/><body><p>North American VHF/UHF/Microwave contests and others in which a 4-character grid locator is the required exchange.</p></body></html></string>
</property>
<property name="text">
<string>NA VHF Contest</string>
</property>
<attribute name="buttonGroup">
<string notr="true">special_op_activity_button_group</string>
</attribute>
</widget>
</item>
<item row="0" column="0">
<widget class="QRadioButton" name="rbFox">
<property name="toolTip">
<string><html><head/><body><p>FT8 DXpedition mode: Fox (DXpedition) operator.</p></body></html></string>
</property>
<property name="text">
<string>Fox</string>
</property>
<property name="checked">
<bool>false</bool>
</property>
<attribute name="buttonGroup">
<string notr="true">special_op_activity_button_group</string>
</attribute>
</widget>
</item>
<item row="2" column="0">
<widget class="QRadioButton" name="rbEU_VHF_Contest">
<property name="sizePolicy">
<sizepolicy hsizetype="Minimum" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="toolTip">
<string><html><head/><body><p>European VHF+ contests requiring a signal report, serial number, and 6-character locator.</p></body></html></string>
</property>
<property name="text">
<string>EU VHF Contest</string>
</property>
<attribute name="buttonGroup">
<string notr="true">special_op_activity_button_group</string>
</attribute>
</widget>
</item>
<item row="2" column="3">
<layout class="QHBoxLayout" name="horizontalLayout_18" stretch="2,1,1">
2018-08-29 16:02:06 -04:00
<item>
2018-12-01 19:51:41 -05:00
<widget class="QRadioButton" name="rbRTTY_Roundup">
2018-10-09 15:40:38 -04:00
<property name="toolTip">
2018-12-01 19:51:41 -05:00
<string><html><head/><body><p>ARRL RTTY Roundup and similar contests. Exchange is US state, Canadian province, or &quot;DX&quot;.</p></body></html></string>
2018-10-09 15:40:38 -04:00
</property>
2018-08-29 16:02:06 -04:00
<property name="text">
2018-12-01 19:51:41 -05:00
<string>ARRL RTTY Roundup</string>
2018-08-29 16:02:06 -04:00
</property>
2018-10-30 17:06:01 -04:00
<attribute name="buttonGroup">
<string notr="true">special_op_activity_button_group</string>
</attribute>
2018-08-29 16:02:06 -04:00
</widget>
</item>
<item>
2018-12-01 19:51:41 -05:00
<spacer name="horizontalSpacer_10">
2018-08-29 16:02:06 -04:00
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>40</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item>
2018-12-01 19:51:41 -05:00
<layout class="QFormLayout" name="formLayout_17">
2018-08-29 16:02:06 -04:00
<item row="0" column="0">
2018-12-01 19:51:41 -05:00
<widget class="QLabel" name="labRTTY">
2018-08-29 16:02:06 -04:00
<property name="text">
2018-12-01 19:51:41 -05:00
<string>RTTY RU Exch:</string>
2018-08-29 16:02:06 -04:00
</property>
<property name="buddy">
2018-12-01 19:51:41 -05:00
<cstring>RTTY_Exchange</cstring>
2018-08-29 16:02:06 -04:00
</property>
</widget>
</item>
<item row="0" column="1">
2018-12-01 19:51:41 -05:00
<widget class="QLineEdit" name="RTTY_Exchange">
2018-09-13 11:25:31 -04:00
<property name="minimumSize">
<size>
<width>70</width>
<height>0</height>
</size>
</property>
2018-10-09 15:40:38 -04:00
<property name="toolTip">
2018-12-01 19:51:41 -05:00
<string><html><head/><body><p>ARRL RTTY Roundup and similar contests. Exchange is US state, Canadian province, or &quot;DX&quot;.</p></body></html></string>
2018-10-09 15:40:38 -04:00
</property>
2018-08-29 16:02:06 -04:00
<property name="text">
2018-12-01 19:51:41 -05:00
<string>NJ</string>
2018-08-29 16:02:06 -04:00
</property>
<property name="alignment">
<set>Qt::AlignCenter</set>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</item>
2018-12-01 19:51:41 -05:00
<item row="0" column="1" rowspan="3">
<spacer name="horizontalSpacer_11">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>40</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item row="1" column="3">
<layout class="QHBoxLayout" name="horizontalLayout_17" stretch="2,1,1">
2018-08-29 16:02:06 -04:00
<item>
2018-12-01 19:51:41 -05:00
<widget class="QRadioButton" name="rbField_Day">
2018-10-09 15:40:38 -04:00
<property name="toolTip">
2018-12-01 19:51:41 -05:00
<string><html><head/><body><p>ARRL Field Day exchange: number of transmitters, Class, and ARRL/RAC section or &quot;DX&quot;.</p></body></html></string>
2018-10-09 15:40:38 -04:00
</property>
2018-08-29 16:02:06 -04:00
<property name="text">
2018-12-01 19:51:41 -05:00
<string>ARRL Field Day</string>
2018-08-29 16:02:06 -04:00
</property>
2018-10-30 17:06:01 -04:00
<attribute name="buttonGroup">
<string notr="true">special_op_activity_button_group</string>
</attribute>
2018-08-29 16:02:06 -04:00
</widget>
</item>
<item>
2018-12-01 19:51:41 -05:00
<spacer name="horizontalSpacer_9">
2018-08-29 16:02:06 -04:00
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>40</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item>
2018-12-01 19:51:41 -05:00
<layout class="QFormLayout" name="formLayout_16">
2018-08-29 16:02:06 -04:00
<item row="0" column="0">
2018-12-01 19:51:41 -05:00
<widget class="QLabel" name="labFD">
2018-08-29 16:02:06 -04:00
<property name="text">
2018-12-01 19:51:41 -05:00
<string>FD Exch:</string>
2018-08-29 16:02:06 -04:00
</property>
<property name="buddy">
2018-12-01 19:51:41 -05:00
<cstring>Field_Day_Exchange</cstring>
2018-08-29 16:02:06 -04:00
</property>
</widget>
</item>
<item row="0" column="1">
2018-12-01 19:51:41 -05:00
<widget class="QLineEdit" name="Field_Day_Exchange">
2018-09-13 11:25:31 -04:00
<property name="minimumSize">
<size>
<width>70</width>
<height>0</height>
</size>
</property>
2018-10-09 15:40:38 -04:00
<property name="toolTip">
2018-12-01 19:51:41 -05:00
<string><html><head/><body><p>ARRL Field Day exchange: number of transmitters, Class, and ARRL/RAC section or &quot;DX&quot;.</p></body></html></string>
2018-10-09 15:40:38 -04:00
</property>
2018-08-29 16:02:06 -04:00
<property name="text">
2018-12-01 19:51:41 -05:00
<string>6A SNJ</string>
2018-08-29 16:02:06 -04:00
</property>
<property name="alignment">
<set>Qt::AlignCenter</set>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</item>
</layout>
2018-07-02 15:19:17 -04:00
</widget>
</item>
2018-10-21 14:18:46 -04:00
<item row="0" column="1">
<widget class="QGroupBox" name="groupBox_5">
<property name="title">
<string>Miscellaneous</string>
</property>
<layout class="QFormLayout" name="formLayout_10">
<item row="0" column="0">
<widget class="QLabel" name="label_3">
<property name="text">
<string>Degrade S/N of .wav file: </string>
</property>
<property name="buddy">
<cstring>sbDegrade</cstring>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QDoubleSpinBox" name="sbDegrade">
<property name="toolTip">
<string>For offline sensitivity tests</string>
</property>
<property name="suffix">
<string> dB</string>
</property>
<property name="decimals">
<number>1</number>
</property>
<property name="singleStep">
<double>1.000000000000000</double>
</property>
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="label_9">
<property name="text">
<string>Receiver bandwidth:</string>
</property>
<property name="buddy">
<cstring>sbBandwidth</cstring>
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QSpinBox" name="sbBandwidth">
<property name="toolTip">
<string>For offline sensitivity tests</string>
</property>
<property name="suffix">
<string> Hz</string>
</property>
<property name="maximum">
<number>6000</number>
</property>
<property name="singleStep">
<number>100</number>
</property>
<property name="value">
<number>2500</number>
</property>
</widget>
</item>
<item row="2" column="0">
<widget class="QLabel" name="label_11">
<property name="text">
<string>Tx delay:</string>
</property>
<property name="buddy">
<cstring>sbTxDelay</cstring>
</property>
</widget>
</item>
<item row="2" column="1">
<widget class="QDoubleSpinBox" name="sbTxDelay">
<property name="toolTip">
<string>Minimum delay between assertion of PTT and start of Tx audio.</string>
</property>
<property name="suffix">
<string> s</string>
</property>
<property name="decimals">
<number>1</number>
</property>
<property name="minimum">
<double>0.000000000000000</double>
</property>
<property name="maximum">
<double>0.500000000000000</double>
</property>
<property name="singleStep">
<double>0.100000000000000</double>
</property>
</widget>
</item>
<item row="3" column="0" colspan="2">
<widget class="QGroupBox" name="groupBox_10">
<property name="minimumSize">
<size>
<width>0</width>
<height>50</height>
</size>
</property>
<property name="title">
<string>Tone spacing</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_19">
<item>
<widget class="QCheckBox" name="cbx2ToneSpacing">
<property name="toolTip">
<string><html><head/><body><p>Generate Tx audio with twice the normal tone spacing. Intended for special LF/MF transmitters that use a divide-by-2 before generating RF.</p></body></html></string>
</property>
<property name="text">
<string>x 2</string>
</property>
</widget>
</item>
<item>
<widget class="QCheckBox" name="cbx4ToneSpacing">
<property name="enabled">
<bool>true</bool>
</property>
<property name="toolTip">
<string><html><head/><body><p>Generate Tx audio with four times the normal tone spacing. Intended for special LF/MF transmitters that use a divide-by-4 before generating RF.</p></body></html></string>
</property>
<property name="text">
<string>x 4 </string>
</property>
</widget>
</item>
</layout>
</widget>
</item>
</layout>
</widget>
</item>
2018-10-27 18:21:29 -04:00
<item row="2" column="0" colspan="2">
2018-10-21 14:18:46 -04:00
<spacer name="verticalSpacer_8">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>0</width>
<height>0</height>
</size>
</property>
</spacer>
</item>
2015-11-22 14:17:06 -05:00
</layout>
2015-11-17 20:28:12 -05:00
</widget>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</widget>
</item>
2016-10-26 09:17:57 -04:00
<item>
<widget class="QDialogButtonBox" name="configuration_dialog_button_box">
<property name="toolTip">
2018-10-09 15:40:38 -04:00
<string><html><head/><body><p>Discard (Cancel) or apply (OK) configuration changes including</p><p>resetting the radio interface and applying any soundcard changes</p></body></html></string>
2016-10-26 09:17:57 -04:00
</property>
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="standardButtons">
<set>QDialogButtonBox::Cancel|QDialogButtonBox::Ok</set>
</property>
</widget>
</item>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</layout>
</widget>
2018-10-16 19:26:04 -04:00
<customwidgets>
<customwidget>
<class>DecodeHighlightingListView</class>
<extends>QListView</extends>
2018-11-07 12:49:45 -05:00
<header>widgets/DecodeHighlightingListView.hpp</header>
2018-10-16 19:26:04 -04:00
</customwidget>
</customwidgets>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstops>
2016-10-28 10:34:30 -04:00
<tabstop>configuration_tabs</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>callsign_line_edit</tabstop>
<tabstop>grid_line_edit</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>use_dynamic_grid</tabstop>
2017-07-07 19:11:41 -04:00
<tabstop>region_combo_box</tabstop>
2015-03-04 07:22:33 -05:00
<tabstop>type_2_msg_gen_combo_box</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>TX_messages_check_box</tabstop>
<tabstop>DXCC_check_box</tabstop>
<tabstop>font_push_button</tabstop>
<tabstop>decoded_text_font_push_button</tabstop>
<tabstop>monitor_off_check_box</tabstop>
2016-10-28 10:34:30 -04:00
<tabstop>monitor_last_used_check_box</tabstop>
2018-02-06 16:49:57 -05:00
<tabstop>quick_call_check_box</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>disable_TX_on_73_check_box</tabstop>
2016-10-28 10:34:30 -04:00
<tabstop>CW_id_after_73_check_box</tabstop>
<tabstop>enable_VHF_features_check_box</tabstop>
2015-02-27 13:59:08 -05:00
<tabstop>tx_QSY_check_box</tabstop>
2016-10-28 10:34:30 -04:00
<tabstop>single_decode_check_box</tabstop>
2015-05-19 13:52:47 -04:00
<tabstop>decode_at_52s_check_box</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>tx_watchdog_spin_box</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>CW_id_interval_spin_box</tabstop>
<tabstop>rig_combo_box</tabstop>
<tabstop>CAT_poll_interval_spin_box</tabstop>
<tabstop>CAT_port_combo_box</tabstop>
<tabstop>CAT_serial_baud_combo_box</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>CAT_default_bit_radio_button</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>CAT_7_bit_radio_button</tabstop>
<tabstop>CAT_8_bit_radio_button</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>CAT_default_stop_bit_radio_button</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>CAT_one_stop_bit_radio_button</tabstop>
<tabstop>CAT_two_stop_bit_radio_button</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>CAT_handshake_default_radio_button</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>CAT_handshake_none_radio_button</tabstop>
<tabstop>CAT_handshake_xon_radio_button</tabstop>
<tabstop>CAT_handshake_hardware_radio_button</tabstop>
2015-09-09 08:16:22 -04:00
<tabstop>force_DTR_combo_box</tabstop>
<tabstop>force_RTS_combo_box</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>PTT_VOX_radio_button</tabstop>
2015-09-09 08:16:22 -04:00
<tabstop>PTT_CAT_radio_button</tabstop>
2016-04-06 13:11:41 -04:00
<tabstop>PTT_DTR_radio_button</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>PTT_RTS_radio_button</tabstop>
<tabstop>PTT_port_combo_box</tabstop>
<tabstop>TX_source_data_radio_button</tabstop>
<tabstop>TX_source_mic_radio_button</tabstop>
<tabstop>mode_none_radio_button</tabstop>
<tabstop>mode_USB_radio_button</tabstop>
<tabstop>mode_data_radio_button</tabstop>
<tabstop>split_none_radio_button</tabstop>
<tabstop>split_rig_radio_button</tabstop>
<tabstop>split_emulate_radio_button</tabstop>
<tabstop>test_CAT_push_button</tabstop>
<tabstop>test_PTT_push_button</tabstop>
<tabstop>sound_input_combo_box</tabstop>
<tabstop>sound_input_channel_combo_box</tabstop>
<tabstop>sound_output_combo_box</tabstop>
<tabstop>sound_output_channel_combo_box</tabstop>
<tabstop>save_path_select_push_button</tabstop>
2015-09-09 08:16:22 -04:00
<tabstop>azel_path_select_push_button</tabstop>
2016-10-28 10:34:30 -04:00
<tabstop>checkBoxPwrBandTxMemory</tabstop>
<tabstop>checkBoxPwrBandTuneMemory</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>add_macro_line_edit</tabstop>
<tabstop>add_macro_push_button</tabstop>
<tabstop>delete_macro_push_button</tabstop>
<tabstop>macros_list_view</tabstop>
<tabstop>prompt_to_log_check_box</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>cbAutoLog</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>log_as_RTTY_check_box</tabstop>
<tabstop>report_in_comments_check_box</tabstop>
<tabstop>clear_DX_check_box</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>opCallEntry</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>psk_reporter_check_box</tabstop>
2015-04-15 12:40:49 -04:00
<tabstop>udp_server_line_edit</tabstop>
<tabstop>udp_server_port_spin_box</tabstop>
<tabstop>accept_udp_requests_check_box</tabstop>
<tabstop>udpWindowToFront</tabstop>
<tabstop>udpWindowRestore</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>enable_n1mm_broadcast_check_box</tabstop>
<tabstop>n1mm_server_name_line_edit</tabstop>
<tabstop>n1mm_server_port_spin_box</tabstop>
2017-07-07 19:11:41 -04:00
<tabstop>calibration_slope_ppm_spin_box</tabstop>
<tabstop>calibration_intercept_spin_box</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<tabstop>frequencies_table_view</tabstop>
2016-10-28 10:34:30 -04:00
<tabstop>stations_table_view</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>highlighting_list_view</tabstop>
<tabstop>reset_highlighting_to_defaults_push_button</tabstop>
<tabstop>LotW_CSV_URL_line_edit</tabstop>
<tabstop>LotW_CSV_fetch_push_button</tabstop>
<tabstop>LotW_days_since_upload_spin_box</tabstop>
2016-10-28 10:34:30 -04:00
<tabstop>sbNtrials</tabstop>
<tabstop>sbAggressive</tabstop>
<tabstop>cbTwoPass</tabstop>
<tabstop>sbDegrade</tabstop>
<tabstop>sbBandwidth</tabstop>
<tabstop>sbTxDelay</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>cbx2ToneSpacing</tabstop>
<tabstop>cbx4ToneSpacing</tabstop>
2018-10-27 18:21:29 -04:00
<tabstop>rbFox</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>rbNA_VHF_Contest</tabstop>
<tabstop>rbEU_VHF_Contest</tabstop>
2018-10-30 17:06:01 -04:00
<tabstop>rbField_Day</tabstop>
<tabstop>Field_Day_Exchange</tabstop>
<tabstop>rbRTTY_Roundup</tabstop>
2018-10-16 19:26:04 -04:00
<tabstop>RTTY_Exchange</tabstop>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</tabstops>
<resources/>
<connections>
<connection>
<sender>configuration_dialog_button_box</sender>
<signal>accepted()</signal>
<receiver>configuration_dialog</receiver>
<slot>accept()</slot>
<hints>
<hint type="sourcelabel">
2017-07-07 19:11:41 -04:00
<x>281</x>
<y>488</y>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</hint>
<hint type="destinationlabel">
<x>157</x>
<y>274</y>
</hint>
</hints>
</connection>
<connection>
<sender>configuration_dialog_button_box</sender>
<signal>rejected()</signal>
<receiver>configuration_dialog</receiver>
<slot>reject()</slot>
<hints>
<hint type="sourcelabel">
2017-07-07 19:11:41 -04:00
<x>349</x>
<y>488</y>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</hint>
<hint type="destinationlabel">
<x>286</x>
<y>274</y>
</hint>
</hints>
</connection>
<connection>
2015-04-15 12:40:49 -04:00
<sender>add_macro_push_button</sender>
<signal>clicked()</signal>
<receiver>add_macro_line_edit</receiver>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<slot>setFocus()</slot>
<hints>
<hint type="sourcelabel">
2017-10-30 11:18:54 -04:00
<x>72</x>
<y>42</y>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</hint>
<hint type="destinationlabel">
2017-10-30 11:18:54 -04:00
<x>43</x>
<y>42</y>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</hint>
</hints>
</connection>
<connection>
2015-04-15 12:40:49 -04:00
<sender>add_macro_line_edit</sender>
<signal>returnPressed()</signal>
<receiver>add_macro_push_button</receiver>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
<slot>setFocus()</slot>
<hints>
<hint type="sourcelabel">
2017-10-30 11:18:54 -04:00
<x>43</x>
<y>42</y>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</hint>
<hint type="destinationlabel">
2017-10-30 11:18:54 -04:00
<x>72</x>
<y>42</y>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</hint>
</hints>
</connection>
</connections>
<buttongroups>
2018-12-28 11:19:29 -05:00
<buttongroup name="CAT_data_bits_button_group"/>
2019-01-09 09:45:41 -05:00
<buttongroup name="special_op_activity_button_group"/>
2018-12-28 11:19:29 -05:00
<buttongroup name="PTT_method_button_group"/>
2019-01-09 09:45:41 -05:00
<buttongroup name="TX_audio_source_button_group"/>
<buttongroup name="TX_mode_button_group"/>
2018-12-28 11:19:29 -05:00
<buttongroup name="split_mode_button_group"/>
2019-01-09 09:45:41 -05:00
<buttongroup name="CAT_stop_bits_button_group"/>
<buttongroup name="CAT_handshake_button_group"/>
Added support for use of "Standard" locations for writable files.
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
</buttongroups>
</ui>