mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-25 13:48:42 -05:00
Small tweaks to ftrsd paper - sections 1-6 seem to be in pretty good shape.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6374 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
500ff59ce9
commit
31065dba14
@ -1276,7 +1276,7 @@ Make independent stochastic decisions about whether to erase each symbol
|
||||
\end_layout
|
||||
|
||||
\begin_layout Enumerate
|
||||
Attempt errors-and-erasures decoding by using the BM algorithm and the set
|
||||
Attempt errors-and-erasures decoding using the BM algorithm and the set
|
||||
of erasures determined in step 2.
|
||||
If the BM decoder produces a candidate codeword, go to step 5.
|
||||
\end_layout
|
||||
@ -1752,7 +1752,7 @@ reference "fig:bodide"
|
||||
also shows results calculated from theoretical probability distributions
|
||||
for comparison with the BM results.
|
||||
The simulated BM results agree with theory to within about 0.1 dB.
|
||||
This differences are caused by small errors in the estimates of time and
|
||||
The differences are caused by small errors in the estimates of time and
|
||||
frequency offset of the received signal in the simulated data.
|
||||
Such
|
||||
\begin_inset Quotes eld
|
||||
@ -2423,7 +2423,7 @@ The signal to noise ratio in a bandwidth,
|
||||
, that is at least as large as the bandwidth occupied by the signal is:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\mathrm{SNR}_{B}=\frac{P_{s}}{N_{o}B}\label{eq:SNR}
|
||||
\mathrm{SNR}_{B}=\frac{P_{s}}{N_{0}B}\label{eq:SNR}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -2432,8 +2432,8 @@ where
|
||||
\begin_inset Formula $P_{s}$
|
||||
\end_inset
|
||||
|
||||
is the signal power (W),
|
||||
\begin_inset Formula $N_{o}$
|
||||
is the average signal power (W),
|
||||
\begin_inset Formula $N_{0}$
|
||||
\end_inset
|
||||
|
||||
is one-sided noise power spectral density (W/Hz), and
|
||||
@ -2453,7 +2453,7 @@ where
|
||||
\begin_layout Standard
|
||||
In the professional literature, decoder performance is characterized in
|
||||
terms of
|
||||
\begin_inset Formula $E_{b}/N_{o}$
|
||||
\begin_inset Formula $E_{b}/N_{0}$
|
||||
\end_inset
|
||||
|
||||
, the ratio of the energy collected per information bit,
|
||||
@ -2461,7 +2461,7 @@ In the professional literature, decoder performance is characterized in
|
||||
\end_inset
|
||||
|
||||
, to the one-sided noise power spectral density,
|
||||
\begin_inset Formula $N_{o}$
|
||||
\begin_inset Formula $N_{0}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
@ -2474,7 +2474,12 @@ In the professional literature, decoder performance is characterized in
|
||||
\end_inset
|
||||
|
||||
).
|
||||
Signal power is related to the energy per symbol by
|
||||
JT65 signals have constant envelope, so the average signal power is related
|
||||
to the energy per symbol,
|
||||
\begin_inset Formula $E_{s}$
|
||||
\end_inset
|
||||
|
||||
, by
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P_{s}=E_{s}/\tau_{s}.\label{eq:signal_power}
|
||||
@ -2525,7 +2530,7 @@ reference "eq:Eb_Es"
|
||||
:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\mathrm{SNR}_{2500}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.\label{eq:SNR2500}
|
||||
\mathrm{SNR}_{2500}=1.23\times10^{-3}\frac{E_{b}}{N_{0}}.\label{eq:SNR2500}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -2536,7 +2541,7 @@ If all quantities are expressed in dB, then:
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\mathrm{SNR}_{2500}=(E_{b}/N_{o})_{\mathrm{dB}}-29.1\,\mathrm{dB}=(E_{s}/N_{0})_{\mathrm{dB}}-29.7\,\mathrm{dB}.\label{eq:SNR_all_types}
|
||||
\mathrm{SNR}_{2500}=(E_{b}/N_{0})_{\mathrm{dB}}-29.1\,\mathrm{dB}=(E_{s}/N_{0})_{\mathrm{dB}}-29.7\,\mathrm{dB}.\label{eq:SNR_all_types}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
Loading…
Reference in New Issue
Block a user