mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2025-05-27 20:02:28 -04:00
The MessageClient and MessageServer classes now agree a maximum common schema number for the protocol described in NetworkMessage.hpp. this is achieved by the client sending a Heartbeat message specifying the highest schema number supported, the server responds with messages using the minimum of its highest supported schema number and the highest schema number sent by the client in its initial Heartbeat message. This mechanism enables clients and servers built with different generations of the message schema to interoperate with minimum loss of functionality. It should be noted that messages may be extended with new fields on the end of the current definition so long as the meaning of the original fields are unchanged. Such an extension does not need the schema number to be incremented. On the other hand, using a newer version of the underlying Qt QDataStream::Version should always increment the schema number since the NetworkMessage::Builder and NetworkMessage::Reader classes need to know which QDataStream::Version to use. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5991 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
__ __ ______ _____ ________ __ __ | \ _ | \ / \ | \| \ | \ | \ | $$ / \ | $$| $$$$$$\ \$$$$$ \$$$$$$$$ | $$ | $$ | $$/ $\| $$| $$___\$$ | $$ | $$ ______ \$$\/ $$ | $$ $$$\ $$ \$$ \ __ | $$ | $$| \ >$$ $$ | $$ $$\$$\$$ _\$$$$$$\| \ | $$ | $$ \$$$$$$/ $$$$\ | $$$$ \$$$$| \__| $$| $$__| $$ | $$ | $$ \$$\ | $$$ \$$$ \$$ $$ \$$ $$ | $$ | $$ | $$ \$$ \$$ \$$$$$$ \$$$$$$ \$$ \$$ \$$ Copyright (C) 2001 - 2014 by Joe Taylor, K1JT. WSJT-X implements JT9, a new mode designed especially for the LF, MF, and HF bands, as well as the popular mode JT65. Both modes were designed for making reliable, confirmed QSOs under extreme weak-signal conditions. They use nearly identical message structure and source encoding. JT65 was designed for EME (“moonbounce”) on the VHF/UHF bands and has also proved very effective for worldwide QRP communication at HF; in contrast, JT9 is optimized for HF and lower frequencies. JT9 is about 2 dB more sensitive than JT65A while using less than 10% of the bandwidth. World-wide QSOs are possible with power levels of a few watts and compromise antennas. A 2 kHz slice of spectrum is essentially full when occupied by ten JT65 signals. As many as 100 JT9 signals can fit into the same space, without overlap. WSJT-X offers a “bi-lingual” operating mode in which you can transmit and receive JT65 and JT9 signals, switching between modes automatically as needed. Displayed bandwidth can be as large as 5 kHz. If your receiver has as upper-sideband filter at least 4 kHz wide, you can have all the typical JT65 and JT9 activity on screen at once, available for making QSOs with a click of the mouse. Even with standard SSB-width IF filters, switching between JT65 and JT9 modes is quick and convenient. Be sure to read the online WSJT-X User's Guide. Project web site: http://www.physics.princeton.edu/pulsar/K1JT/wsjtx.html Project mailing list (shared with other applications from the same team): https://groups.yahoo.com/neo/groups/wsjtgroup
Description
This a mirror of WSJT-X and will be updated every 6 hours. PR will be ignored, head to the SF link. Repo will be updated at 06:00:00 UTC 12:00:00 UTC 18:00:00 UTC 00:00:00 UTC Now fixed.
Languages
C++
52.4%
Fortran
19.5%
Python
18.8%
C
7.6%
CMake
1.3%
Other
0.1%